• Chinese Journal of Lasers
  • Vol. 46, Issue 5, 0508001 (2019)
Quan Sun1, Shuai Zu1, Kosei Ueno1, Qihuang Gong3, and Hiroaki Misawa1、**
Author Affiliations
  • 11Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
  • 3Department of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/CJL201946.0508001 Cite this Article Set citation alerts
    Quan Sun, Shuai Zu, Kosei Ueno, Qihuang Gong, Hiroaki Misawa. Applications of Ultrafast Photoemission Electron Microscopy in Nanophotonics[J]. Chinese Journal of Lasers, 2019, 46(5): 0508001 Copy Citation Text show less
    References

    [1] Guo F Z. Low energy/photoemission electron microscopy[J]. Physics, 39, 211-218(2010).

    [2] Yang J H, Yang H, Gong Q H. Ultrafast time-resolved photoemission electron microscopy and its applications[J]. Physics, 46, 785-793(2017).

    [3] BAUER E. Surface microscopy with low energy electrons[M]. New York: Springer(2014).

    [4] Man M K L, Margiolakis A, Deckoff-Jones S et al. . Imaging the motion of electrons across semiconductor heterojunctions[J]. Nature Nanotechnology, 12, 36-40(2017). http://www.nature.com/nnano/journal/v12/n1/abs/nnano.2016.183.html

    [5] Locatelli A, Aballe L, Mentes T O et al. Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications[J]. Surface and Interface Analysis, 38, 1554-1557(2006). http://onlinelibrary.wiley.com/doi/10.1002/sia.2424/full

    [6] Sun Q, Ueno K, Yu H et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy[J]. Light: Science & Applications, 2, e118(2013). http://www.nature.com/lsa/journal/v2/n12/full/lsa201374a.html

    [7] Brüche E. Elektronenmikroskopische abbildung mit lichtelektrischen elektronen[J]. Zeitschrift für Physik, 86, 448-450(1933). http://link.springer.com/article/10.1007/BF01341360

    [8] Engel W, Kordesch M E, Rotermund H H et al. A UHV-compatible photoelectron emission microscope for applications in surface science[J]. Ultramicroscopy, 36, 148-153(1991). http://www.sciencedirect.com/science/article/pii/030439919190146W

    [9] Menteş T O, Locatelli A. Angle-resolved X-ray photoemission electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 185, 323-329(2012). http://www.sciencedirect.com/science/article/pii/S0368204812000801

    [10] Fischer U C, Pohl D W. Observation of single-particle plasmons by near-field optical microscopy[J]. Physical Review Letters, 62, 458-461(1989). http://www.ncbi.nlm.nih.gov/pubmed/10040238

    [11] Fang Z Y, Peng Q, Song W T et al. Plasmonic focusing in symmetry broken nanocorrals[J]. Nano Letters, 11, 893-897(2011). http://www.ncbi.nlm.nih.gov/pubmed/21186820

    [12] Zu S, Han T Y, Jiang M L et al. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures[J]. ACS Nano, 12, 3908-3916(2018). http://www.ncbi.nlm.nih.gov/pubmed/29613764

    [13] Kuttge M. Vesseur E J R, Koenderink A F, et al. Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence[J]. Physical Review B, 79, 113405(2009).

    [14] Koh A L, Bao K, Khan I et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes[J]. ACS Nano, 3, 3015-3022(2009). http://pubs.acs.org/doi/abs/10.1021/nn900922z

    [15] Nicoletti O, de la Peña F, Leary R K et al. . Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles[J]. Nature, 502, 80-84(2013). http://www.ncbi.nlm.nih.gov/pubmed/24091976

    [16] Sun Q, Yu H, Ueno K et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J]. ACS Nano, 10, 3835-3842(2016). http://www.ncbi.nlm.nih.gov/pubmed/26878248

    [17] Schertz F, Schmelzeisen M, Mohammadi R et al. Near field of strongly coupled plasmons: uncovering dark modes[J]. Nano Letters, 12, 1885-1890(2012). http://www.ncbi.nlm.nih.gov/pubmed/22429148

    [18] Yang J H, Sun Q, Yu H et al. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 5, 187-193(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170526000223QnTqWs

    [19] Yu H, Sun Q, Ueno K et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy[J]. ACS Nano, 10, 10373-10381(2016). http://pubs.acs.org/doi/abs/10.1021/acsnano.6b06206

    [20] Yu H, Sun Q, Yang J H et al. Near-field spectral properties of coupled plasmonic nanoparticle arrays[J]. Optics Express, 25, 6883-6894(2017). http://www.onacademic.com/detail/journal_1000040493314210_f156.html

    [21] Song H F, Sun Q, Li J et al. Exotic mode suppression in plasmonic heterotrimer system[J]. The Journal of Physical Chemistry C, 123, 1398-1405(2019).

    [22] Yang J H, Sun Q, Ueno K et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes[J]. Nature Communications, 9, 4858(2018).

    [23] Kubo A, Onda K, Petek H et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film[J]. Nano Letters, 5, 1123-1127(2005). http://europepmc.org/abstract/MED/15943454

    [24] Shi X, Ueno K, Oshikiri T et al. Enhanced water splitting under modal strong coupling conditions[J]. Nature Nanotechnology, 13, 953-958(2018). http://www.nature.com/articles/s41565-018-0208-x

    [25] Cui J, Ji B Y, Lin J Q. Plasmonic fano resonance in metallic disk-like nanostructure system[J]. Laser & Optoelectronics Progress, 55, 060002(2018).

    [26] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 54, 030002(2017).

    [27] Ji B Y, Qin J, Tao H Y et al. Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures[J]. New Journal of Physics, 18, 093046(2016). http://iopscience.iop.org/1367-2630/18/9/093046

    [28] Ji B Y, Wang Q, Song X W et al. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy[J]. Journal of Physics D: Applied Physics, 50, 415309(2017). http://adsabs.harvard.edu/abs/2017JPhD...50O5309J

    Quan Sun, Shuai Zu, Kosei Ueno, Qihuang Gong, Hiroaki Misawa. Applications of Ultrafast Photoemission Electron Microscopy in Nanophotonics[J]. Chinese Journal of Lasers, 2019, 46(5): 0508001
    Download Citation