[1] ZHOU X D, SINGHAL S C. Structure and bonding: Solid oxide fuel cells[M]//BOCARSLY A, MINGOS D M P., Eds. Structure and Bonding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 1-32.
[2] XU Q D, GUO Z J, XIA L C, et al. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels[J]. Energy Convers Manag, 2022, 253: 115175.
[3] ORMEROD R M. Solid oxide fuel cells[J]. Chem Soc Rev, 2003, 32(1): 17-28.
[4] SHAO Z P, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005): 170-173.
[5] KENNOUCHE D, FANG Q, BLUM L, et al. Analysis of the cathode electrical contact in SOFC stacks[J]. J Electrochem Soc, 2018, 165(9): F677-F683.
[6] SHIM S, MUMM D R. Stability analysis of the interface between electrical contact layers and metal interconnects in solid oxide fuel cells[J]. ECS Trans, 2007, 7(1): 795-804.
[7] GUO M T, HE Q J, CHENG C, et al. New interconnector designs for electrical performance enhancement of solid oxide fuel cells: A 3D modelling study[J]. J Power Sources, 2022, 533: 231373.
[9] BIANCO M, OUWELTJES J P, VAN HERLE J. Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18 000 hours[J]. Int J Hydrog Energy, 2019, 44(59): 31406-31422.
[10] DEY T, GHOSH P C, SINGDEO D, et al. Diagnosis of scale up issues associated with planar solid oxide fuel cells[J]. Int J Hydrog Energy, 2011, 36(16): 9967-9976.
[11] DEY T, SINGDEO D, BOSE M, et al. Study of contact resistance at the electrode-interconnect interfaces in planar type solid oxide fuel cells[J]. J Power Sources, 2013, 233: 290-298.
[12] WANG G L, GUAN W B, MIAO F X, et al. Factors of cathode current-collecting layer affecting cell performance inside solid oxide fuel cell stacks[J]. Int J Hydrog Energy, 2014, 39(31): 17836-17844.
[14] YANG Z G, XIA G G, STEVENSON J W. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells[M]//Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 217-224.
[15] HARTH-J A, ALIMADADI H, HOLT T, et al. Electrical resistance measurements and microstructural characterization of the anode/interconnect contact in simulated anode-side SOFC conditions[J]. J Electrochem Soc, 2015, 162(4): F387-F396.
[16] JIANG S P, LOVE J G, APATEANU L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells[J]. Solid State Ion, 2003, 160(1-2): 15-26.
[17] SPOTORNO R, PICCARDO P, SCHILLER G. Effect of cathode contacting on anode supported cell performances[J]. J Electrochem Soc, 2016, 163(8): F872-F876.
[18] SASAKI K, WATANABE K, SHIOSAKI K, et al. Multi-fuel capability of solid oxide fuel cells[J]. J Electroceram, 2004, 13(1-3): 669-675.
[19] JIN L, GUAN W B, MA X, et al. Quantitative contribution of resistance sources of components to stack performance for planar solid oxide fuel cells[J]. J Power Sources, 2014, 253: 305-314.
[20] LIU S X, SONG C, LIN Z J. The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization[J]. J Power Sources, 2008, 183(1): 214-225.
[21] HAN Minfang, ZHANG Yongliang. J Chin Ceram Soc, 2017, 45(11): 1548-1554.
[22] WEI Fei, WANG Leying, LUO Linghong, et al. J Chin Ceram Soc, 2023, 51(7): 1763-1772.
[23] ZHANG J H, GUO H D, LEI L B, et al. Experimental investigation of fuel starvation on industrial-sized solid oxide fuel cells using segmented cathodes and area specific resistances[J]. J Power Sources, 2023, 562: 232725.
[24] ZHANG J H, LEI L B, LI H Y, et al. Experimental investigations of cell resistances to characterize the concentration polarization behavior of 10×10 cm2 solid oxide fuel cells[J]. J Power Sources, 2021, 516: 230678.
[25] ZHANG J H, GUO H D, LEI L B, et al. The influence of step potentials upon defect equilibria and defect concentrations inside solid oxide fuel cells[J]. Mater Sci Eng B, 2023, 289: 116274.