[1] Stepanov A G, Henin S, Petit Y, Bonacina L, Kasparian J, Wolf J P. Mobile source of high-energy single-cycle terahertz pulses. Applied Physics B, Lasers and Optics, 2010, 101(1–2): 11–14
[2] Hebling J, Almási G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
[3] Polyushkin D K, Hendry E, Stone E K, BarnesWL. THz generation from plasmonic nanoparticle arrays. Nano Letters, 2011, 11(11): 4718–4724
[4] Lu X, Zhang X C. Balanced terahertz wave air-biased-coherentdetection. Applied Physics Letters, 2011, 98(15): 151111
[5] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
[6] Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
[7] Liu X, Fan K, Shadrivov I V, Padilla W J. Experimental realization of a terahertz all-dielectric metasurface absorber. Optics Express, 2017, 25(1): 191–201
[8] Chen H T, PadillaWJ, Zide JM, Gossard A C, Taylor A J, Averitt R D. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600
[9] iu X, Parrott E P J, Ung B S Y, Pickwell-MacPherson E. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light. APL Photonics, 2016, 1(7): 076103
[10] L?ffler T, Bauer T, Siebert K, Roskos H, Fitzgerald A, Czasch S. Terahertz dark-field imaging of biomedical tissue. Optics Express, 2001, 9(12): 616–621
[11] Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite mater. Journal of Infrared, Millimeter and Terahertz Waves, 2013, 34(2): 152–169
[12] Liu J, Mao L, Ku J, Peng H, Lao Z, Chen D, Yang B. Using terahertz spectroscopy to identify transgenic cottonseed oil according to physicochemical quality parameters. Optik (Stuttgart), 2017, 142: 483–488
[13] Federici J F, Moeller L. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 2010, 107 (11): 111101
[14] Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
[15] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981
[16] Efremidis N K, Christodoulides D N. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047
[17] Cottrell D M, Davis J A, Hazard T M. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Optics Letters, 2009, 34(17): 2634–2636
[18] Bhuyan M K, Courvoisier F, Lacourt P A, Jacquot M, Salut R, Furfaro L, Dudley J M. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Applied Physics Letters, 2010, 97(8): 081102
[19] Dufour P, Piché M, De Koninck Y, McCarthy N. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Applied Optics, 2006, 45(36): 9246–9252
[20] Arlt J, Garceschavez V, Sibbett W, Dholakia K. Optical micromanipulation using a Bessel light beam. Optics Communications, 2001, 197(4–6): 239–245
[21] Bitman A, Moshe I, Zalevsky Z. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams. Optics Letters, 2012, 37(19): 4164–4166
[22] Ok G, Choi S W, Park K H, Chun H S. Foreign object detection by sub-terahertz quasi-Bessel beam imaging. Sensors (Basel), 2013, 13 (1): 71–85
[23] Busch S F, Town G, Scheller M A, Koch M. Focus free terahertz reflection imaging and tomography with Bessel beams. Journal of Infrared, Millimeter and Terahertz Waves, 2015, 36(3): 318–326
[24] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2(11): 675–678
[25] Vettenburg T, Dalgarno H I, Nylk J, Coll-Lladó C, Ferrier D E K, ?i?már T, Gunn-Moore F J, Dholakia K. Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11(5): 541–544
[26] Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 2012, 101(7): 071110
[27] Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S. Observation of abruptly autofocusing waves. Optics Letters, 2011, 36(10): 1842–1844
[28] Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36 (15): 2883–2885
[29] Manousidaki M, Papazoglou D, Farsari M, Tzortzakis S. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 2016, 3(5): 525–530
[30] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
[31] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection. Optics Express, 2013, 21(22): 27438–27451
[32] Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
[33] Hu Y, Luo X, Chen Y, Liu Q, Li X, Wang Y, Liu N, Duan H. 3DIntegrated metasurfaces for full-colour holography. Light, Science & Applications, 2019, 8(1): 86
[34] Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
[35] Wen D, Yue F, Ardron M, Chen X. Multifunctional metasurface lens for imaging and Fourier transform. Scientific Reports, 2016, 6(1): 27628
[36] Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Gu C, Li J, Chen H, Chen S, Tian J. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
[37] Wang B, Dong F, Feng H, Yang D, Song Z, Xu L, Chu W, Gong Q, Li Y. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics, 2018, 5(5): 1660– 1664
[38] Zhang C, Yue F, Wen D, Chen M, Zhang Z, Wang W, Chen X. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912
[39] Dharmavarapu R, Hock Ng S, Eftekhari F, Juodkazis S, Bhattacharya S. MetaOptics: opensource software for designing metasurface optical element GDSII layouts. Optics Express, 2020, 28(3): 3505–3516
[40] Mahmood N, Jeong H, Kim I, Mehmood M Q, Zubair M, Akbar A, Saleem M, Anwar M S, Tahir F A, Rho J. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578
[41] Akram M R, Mehmood M Q, Tauqeer T, Rana A S, Rukhlenko I D, Zhu W. Highly efficient generation of Bessel beams with polarization insensitive metasurfaces. Optics Express, 2019, 27(7): 9467–9480
[42] Hao W, Deng M, Chen S, Chen L. High-efficiency generation of Airy beams with Huygens’ metasurface. Physical Review Applied, 2019, 11(5): 054012
[43] Yu B, Wen J, Chen L, Zhang L, Fan Y, Dai B, Kanwal S, Lei D, Zhang D. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces. Photonics Research, 2020, 8(7): 1148–1154
[44] Fan Q, Zhu W, Liang Y, Huo P, Zhang C, Agrawal A, Huang K, Luo X, Lu Y, Qiu C, Lezec H J, Xu T. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165
[45] Yue F, Wen D, Xin J, Gerardot B D, Li J, Chen X. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics, 2016, 3(9): 1558–1563
[46] Dharmavarapu R, Izumi K, Katayama I, Ng S H, Vongsvivut J, Tobin M J, Kuchmizhak A, Nishijima Y, Bhattacharya S, Juodkazis S. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics, 2019, 8(7): 1263–1270
[47] He J, Dong T, Chi B, Zhang Y. Metasurfaces for terahertz wavefront modulation: a review. Journal of Infrared, Millimeter and Terahertz Waves, 2020, 41(6): 607–631
[48] Guo J, Wang T, Zhao H, Wang X, Feng S, Han P, Sun W, Ye J, Situ G, Chen H, Zhang Y. Reconfigurable terahertz metasurface pure phase holograms. Advanced Optical Materials, 2019, 7(10): 1801696
[49] Liu W, Hu B, Huang Z, Guan H, Li H, Wang X, Zhang Y, Yin H, Xiong X, Liu J, Wang Y. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Research, 2018, 6(7): 703–708
[50] Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 2018, 5(5): 1726–1732
[51] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017, 4(1): 139–152
[52] Staude I, Schilling J. Metamaterial-inspired silicon nanophotonics. Nature Photonics, 2017, 11(5): 274–284
[53] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
[54] ChenWT, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
[55] Chremmos I, Efremidis N K, Christodoulides D N. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890– 1892
[56] Zhao Z, Xie C, Ni D, Zhang Y, Li Y, Courvoisier F, Hu M. Scaling the abruptly autofocusing beams in the direct-space. Optics Express, 2017, 25(24): 30598–30605
[57] Wang Q, Xu Q, Zhang X, Tian C, Xu Y, Gu J, Tian Z, Ouyang C, Zhang X, Han J, Zhang W. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 2018, 5(2): 599–606
[58] Xu Y, Zhang X, Tian Z, Gu J, Ouyang C, Li Y, Han J, Zhang W. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Applied Physics Letters, 2015, 107(2): 021105
[59] Ou K, Li G, Li T, Yang H, Yu F, Chen J, Zhao Z, Cao G, Chen X, Lu W. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 2018, 10(40): 19154–19161
[60] Yang Q, Chen X, Xu Q, Tian C, Xu Y, Cong L, Zhang X, Li Y, Zhang C, Zhang X, Han J, Zhang W. Broadband terahertz rotator with an all-dielectric metasurface. Photonics Research, 2018, 6(11): 1056–1061
[61] Zhang D, Lin Z, Liu J, Zhang J, Zhang Z, Hao Z, Wang X. Broadband high-efficiency multiple vortex beams generated by an interleaved geometric-phase multifunctional metasurface. Optical Materials Express, 2020, 10(7): 1531–1544