• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 2, 020602 (2024)
Li LIU*, Yinghong ZUO, Shengli NIU, Jinhui ZHU, Peng SHANG, and Xuedong WANG
Author Affiliations
  • Northwest Institute of Nuclear Technology, Xi'an 710024, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.020602 Cite this Article
    Li LIU, Yinghong ZUO, Shengli NIU, Jinhui ZHU, Peng SHANG, Xuedong WANG. Application of global variance reduction methods for the calculation of γ radiation field in a large space[J]. NUCLEAR TECHNIQUES, 2024, 47(2): 020602 Copy Citation Text show less
    Geometric model for the computation of large-space γ radiation field (color online)
    Fig. 1. Geometric model for the computation of large-space γ radiation field (color online)
    Calculated γ fluence and error in the circular and rectangular grid cells with respect to distance
    Fig. 2. Calculated γ fluence and error in the circular and rectangular grid cells with respect to distance
    Error distribution of γ flux obtained using different variance reduction methods
    Fig. 3. Error distribution of γ flux obtained using different variance reduction methods
    Lower limit of the weight window wth in the near-ground cell computed using different GVR methods with volume modification (color online)
    Fig. 4. Lower limit of the weight window wth in the near-ground cell computed using different GVR methods with volume modification (color online)
    Simulated particle number Nps in the near-ground cells simulated using GVR-P method (color online)
    Fig. 5. Simulated particle number Nps in the near-ground cells simulated using GVR-P method (color online)
    Error distribution of γ flux computed using three GVR methods
    Fig. 6. Error distribution of γ flux computed using three GVR methods
    γ flux distribution computed using three GVR-W methods
    Fig. 7. γ flux distribution computed using three GVR-W methods
    Distribution of wth computed using GVR-W methods
    Fig. 8. Distribution of wth computed using GVR-W methods
    wth in the near-ground cell computed using GVR methods based on information of different particles (color online)
    Fig. 9. wth in the near-ground cell computed using GVR methods based on information of different particles (color online)
    wth in the near-ground cell computed using GVR methods with different SI values (color online)
    Fig. 10. wth in the near-ground cell computed using GVR methods with different SI values (color online)
    减方差方法Variance reductionFOMGRave / %Rmax / %σ
    直接模拟None4.6×10-32019.3×10-2
    局域减方差LVR0.073.7936.7×10-3
    无体积修正的全局减方差GVR-F without fvol1.3×10-336926.4×10-2
    体积修正的全局减方差GVR-F with fvol0.184.5149.5×10-4
    Table 1. Main parameters simulated using different variance reduction methods
    减方差方法Variance reductionFOMGRave / %Rmax / %σ
    GVR-F0.184.5149.5×10-4
    GVR-F with wth,none=00.174.5361.1×10-3

    非计数区修正的GVR-F

    GVR-F with non-count area modification

    0.254.1116.9×10-4
    GVR-R0.841.97.33.8×10-4
    GVR-R with wth,none=00.212.4512.2×10-3

    非计数区修正的GVR-R

    GVR-R with non-count area modification

    1.031.77.13.1×10-4
    Table 2. Main parameters computed using volume modification and different non-count area modifications
    GVRFOMGRave / %Rmax / %σ加速比Speed ratio
    None4.6×10-32019.3×10-2
    GVR-R0.871.88.53.8×10-4190
    GVR-W10.490.61.81.6×10-52 304
    GVR-T2.231.34.18.1×10-5490
    GVR-P2.551.33.87.2×10-5561
    GVR-E2.611.33.67.2×10-5574
    GVR-C3.441.13.25.1×10-5756
    GVR-F2.581.24.27.3×10-5566
    Table 3. Main parameters simulated using seven GVR methods (3rd iteration)
    SIFOMGRave / %Rmax / %σ

    加速比

    Speed ratio

    0.40.124.326.03.1×10-327
    0.50.871.88.53.8×10-4190
    0.64.020.93.67.0×10-5883
    0.711.400.61.82.0×10-52 503
    0.814.780.51.71.4×10-53 246
    0.98.990.72.02.1×10-51 974
    1.02.561.24.27.3×10-5562
    Table 4. Main parameters computed using GVR methods with different SI values (3rd iteration)
    Li LIU, Yinghong ZUO, Shengli NIU, Jinhui ZHU, Peng SHANG, Xuedong WANG. Application of global variance reduction methods for the calculation of γ radiation field in a large space[J]. NUCLEAR TECHNIQUES, 2024, 47(2): 020602
    Download Citation