[1] XIANG Huimin, XING Yan, DAI Fuzhi, et al. High-entropy ceramics:present status, challenges, and a look forward[J]. J Adv Ceram, 2021,10(3): 385-441.
[6] CAO Wenping, LI Weili, XU Dan, et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics[J]. Ceram Int, 2014, 40(7):9273-9278.
[7] BAI Wangfeng, LI Lingyu, LI Wei, et al. Phase diagrams and electromechanical strains in lead-free BNT-based ternary perovskite compounds[J]. J Am Ceram Soc, 2014, 97(11): 3510-3518.
[8] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6(1): 8485.
[9] HONG Weichen, CHEN Fei, SHEN Qiang, et al. Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn)O high-entropy ceramics[J]. J Am Ceram Soc, 2019, 102(4): 2228-2237.
[10] LI Fei, ZHOU Lin, LIU Jixuan, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. J Adv Ceram, 2019, 8(4): 576-582.
[11] YE Beilin, WEN Tongqi, HUANG Kehan, et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C highentropy ceramic[J]. J Am Ceram Soc, 2019, 102(7): 4344-4352.
[12] YAN Xueliang, CONSTANTIN L, LU Yongfeng, et al.(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J Am Ceram Soc, 2018, 101(10): 4486-4491.
[13] HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater, 2019, 166: 271-280.
[14] YE Beilin, WEN Tongqi, NGUYEN M C, et al. First-principles study,fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C highentropy ceramics[J]. Acta Mater, 2019, 170: 15-23.
[15] FENG Lun, FAHRENHOLTZ W G, HILMAS G E. Low-temperature sintering of single-phase, high-entropy carbide ceramics[J]. J Am Ceram Soc, 2019, 102(12): 7217-7224.
[16] GILD J, ZHANG Yuanyao, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep-UK, 2016, 6(1): 37946.
[17] LIU Da, WEN Tongqi, YE Beilin, et al. Synthesis of superfine high-entropy metal diboride powders[J]. Scripta Mater, 2019, 167:110-114.
[18] CHEN Heng, ZHAO Zifan, XIANG Huimin, et al. Effect of reaction routes on the porosity and permeability of porous high entropy(Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 for transpiration cooling[J]. J Mater Sci Technol, 2020, 38(C): 80-85.
[19] LIU Da, LIU Honghua, NING Shanshan, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction[J]. J Am Ceram Soc, 2019, 102(12): 7071-7076.
[20] D?BROWA J, STYGAR M, MIKU?A A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure[J]. Mater Lett, 2018, 216: 32-36.
[21] STYGAR M, D?BROWA J, MO?DZIERZ M, et al. Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system: novel (Cr, Fe, Mg, Mn, Ni)3O4 and (Co, Cr, Fe, Mg, Mn)3O4 high entropy spinels[J]. J Eur Ceram Soc, 2020, 40(4): 1644-1650.
[22] CHEN Kepi, PEI Xintong, TANG Lei, et al. A five-component entropy-stabilized fluorite oxide[J]. J Eur Ceram Soc, 2018, 38(11):
[23] JIANG Sicong, HU Tao, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scripta Mater, 2018, 142: 116-120.
[24] D?BROWA J, STYGAR M, MIKU?A A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure[J]. Mater Lett, 2018, 216: 32-36.
[26] ZHANG Min, ZHANG Xiaoyan, DAS S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite[J]. J Mater Chem C,2019, 7(34): 10551-10560.
[27] DONG Guixia, MA Shuwang, DU Jun, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics[J].Ceram Int, 2009, 35(5): 2069-2075.
[28] JI Li, MCDANIEL M D, WANG Shijun, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst[J]. Nat Nanotechnol, 2015, 10(1):84-90.
[29] WRIGHTON M S, MORSE D L, ELLIS A B, et al. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode[J]. J Am Chem Soc, 1976, 98(1): 44-48.
[32] CHEN Heng, ZHAO Biao, ZHAO Zifan, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. J Mater Sci Technol, 2020, 47: 216-222.
[33] ZHANG Weiming, ZHAO Biao, XIANG Huimin, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders[J]. J Adv Ceram, 2021, 10(1): 62-77.
[34] ZHOU Yanchun, ZHAO Biao, CHEN Heng, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2021,74: 105-118.
[35] WATTS J F, WOLSTENHOLME J. An Introduction to Surface Analysis by XPS and AES[M]. the United Kingdom: John Wiley & Sons Ltd, 2019: 1-18.
[36] XU Hailong, YIN Xiaowei, ZHU Meng, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Appl Mater Inter, 2017, 9(7):6332-6341.
[37] LV Hualiang, JI Guangbin, LIANG Xiaohui, et al. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties[J]. J Mater Chem C, 2015, 3(19): 5056-5064.
[38] ZHAO Biao, GUO Xiaoqin, ZHAO Wanyu, et al. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties[J]. ACS Appl Mater Inter,2016, 8(42): 28917-28925.
[39] SUN Yanchun, CUI Wenyu, LI Jinlong, et al. In-situ growth strategy to fabrication of MWCNTs/Fe3O4 with controllable interface polarization intensity and wide band electromagnetic absorption performance[J]. J Alloy Compd, 2019, 770: 67-75.
[40] ZHANG Cheng, LEI Chenglong, CEN Chao, et al. Interface polarization matters: enhancing supercapacitor performance of spinel NiCo2O4 nanowires by reduced graphene oxide coating[J]. Electrochim Acta, 2018, 260: 814-822.
[41] LIU Yun, CUI Tingting, WU Tong, et al. Excellent microwaveabsorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach[J]. Nanotechnology, 2016,27(16): 165707.
[42] KANG Yuqing, CAO Maosheng, YUAN Jie, et al. Microwave absorption properties of multiferroic BiFeO3 nanoparticles[J]. Mater Lett, 2009, 63(15): 1344-1346.