• Chinese Journal of Lasers
  • Vol. 50, Issue 7, 0708001 (2023)
Jiayun Xue1、2, Pengfei Qi1、2, Lanjun Guo1、2, Nan Zhang1、2, Lie Lin1、3、*, and Weiwei Liu1、2
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
  • show less
    DOI: 10.3788/CJL221564 Cite this Article Set citation alerts
    Jiayun Xue, Pengfei Qi, Lanjun Guo, Nan Zhang, Lie Lin, Weiwei Liu. Research Progress on Spatial Distribution of Fluorescence Induced by Femtosecond Laser Filamentation[J]. Chinese Journal of Lasers, 2023, 50(7): 0708001 Copy Citation Text show less
    References

    [1] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [2] Liu W W, Xue J Y, Su Q et al. Research progress on ultrafast laser filamentation[J]. Chinese Journal of Lasers, 47, 0500003(2020).

    [3] Qi P F, Qian W Q, Guo L J et al. Sensing with femtosecond laser filamentation[J]. Sensors, 22, 7076(2022).

    [4] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 11, 32-53(2011).

    [5] Luo Q, Xu H L, Hosseini S A et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Applied Physics B, 82, 105-109(2006).

    [6] Liu W, Théberge F, Daigle J-F et al. An efficient control of ultrashort laser filament location in air for the purpose of remote sensing[J]. Applied Physics B, 85, 55-58(2006).

    [7] Chin S L, Xu H L, Luo Q et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 95, 1-12(2009).

    [8] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [9] Stibenz G, Zhavoronkov N, Steinmeyer G. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament[J]. Optics Letters, 31, 274-276(2006).

    [10] Silva F, Austin D R, Thai A et al. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal[J]. Nature Communications, 3, 1-5(2012).

    [11] Yu Z Q, Zhang N, Wang J X et al. 0.35% THz pulse conversion efficiency achieved by Ti: sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate[J]. Opto-Electronic Advances, 5, 210065(2022).

    [12] Fedorov V Y, Tzortzakis S. Powerful terahertz waves from long-wavelength infrared laser filaments[J]. Light: Science & Applications, 9, 1-16(2020).

    [13] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).

    [14] Dharmadhikari A K, Edward S, Dharmadhikari J A et al. On the generation of polarization-dependent supercontinuum and third harmonic in air[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094012(2015).

    [15] Kosareva O G, Kandidov V P, Brodeur A et al. From filamentation in condensed media to filamentation in gases[J]. Journal of Nonlinear Optical Physics & Materials, 6, 485-494(1997).

    [16] Mitryukovskiy S I, Liu Y, Houard A et al. Re-evaluation of the peak intensity inside a femtosecond laser filament in air[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094003(2015).

    [17] Hosseini S A, Yu J, Luo Q et al. Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study[J]. Applied Physics B, 79, 519-523(2004).

    [18] Talebpour A, Yang J, Chin S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse[J]. Optics Communications, 163, 29-32(1999).

    [19] Liu W, Théberge F, Arévalo E et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments[J]. Optics Letters, 30, 2602-2604(2005).

    [20] Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 69, 036607(2004).

    [21] Dicaire I, Jukna V, Praz C et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 10, 481-493(2016).

    [22] de la Cruz L, Schubert E, Mongin D et al. High repetition rate ultrashort laser cuts a path through fog[J]. Applied Physics Letters, 109, 251105(2016).

    [23] Courvoisier F, Boutou V, Kasparian J et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 83, 213-215(2003).

    [24] Guo J W, Sun L, Liu J P et al. Beam wander restrained by nonlinearity of femtosecond laser filament in air[J]. Sensors, 22, 4995(2022).

    [25] Xu H L, Kamali Y, Marceau C et al. Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy[J]. Applied Physics Letters, 90, 101106(2007).

    [26] Gravel J F, Luo Q, Boudreau D et al. Sensing of halocarbons using femtosecond laser-induced fluorescence[J]. Analytical Chemistry, 76, 4799-4805(2004).

    [27] Daigle J F, Méjean G, Liu W et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy[J]. Applied Physics B, 87, 749-754(2007).

    [28] Daigle J F, Mathieu P, Roy G et al. Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy[J]. Optics Communications, 278, 147-152(2007).

    [29] Stelmaszczyk K, Rohwetter P, Méjean G et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air[J]. Applied Physics Letters, 85, 3977-3979(2004).

    [30] Liu W, Xu H L, Méjean G et al. Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 76-81(2007).

    [31] Xu H L, Méjean G, Liu W et al. Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy[J]. Applied Physics B, 87, 151-156(2007).

    [32] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 31, 1540-1542(2006).

    [33] Shang B P, Qi P F, Guo J W et al. Manipulation of Long-Distance femtosecond laser Filamentation: from physical model to acoustic diagnosis[J]. Optics & Laser Technology, 157, 108636(2023).

    [34] Zeng B, Wang T J, Hosseini S et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 29, 3226-3230(2012).

    [35] Chu W, Zeng B, Li Z T et al. Range extension in laser-induced breakdown spectroscopy using femtosecond–nanosecond dual-beam laser system[J]. Applied Physics B, 123, 173(2017).

    [36] Tao S S, Xie B F, Xue J Y et al. Giant enhancement of acoustic and fluorescence emission from an off-axis reflective femtosecond laser filamentation system[J]. Optics Express, 30, 38745-38752(2022).

    [37] Iwasaki A, Aközbek N, Ferland B et al. A LIDAR technique to measure the filament length generated by a high-peak power femtosecond laser pulse in air[J]. Applied Physics B, 76, 231-236(2003).

    [38] Sun X D, Xu S Q, Zhao J Y et al. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air[J]. Optics Express, 20, 4790-4795(2012).

    [39] Su Q, Sun L, Chu C Y et al. Effect of molecular orbital angular momentum on the spatial distribution of fluorescence during femtosecond laser filamentation in air[J]. The Journal of Physical Chemistry Letters, 11, 730-734(2020).

    [40] Qi P F, Lin L, Su Q et al. In-situ visualization of multiple filament competition dynamic during nonlinear propagation of femtosecond laser[J]. Scientific Reports, 7, 10384(2017).

    [41] Liu W, Chin S L, Kosareva O G et al. Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol)[J]. Optics Communications, 225, 193-209(2003).

    [42] Talebpour A, Petit S, Chin S L. Re-focusing during the propagation of a focused femtosecond Ti: Sapphire laser pulse in air[J]. Optics Communications, 171, 285-290(1999).

    [43] Luo Q, Hosseini S A, Liu W et al. Effect of beam diameter on the propagation of intense femtosecond laser pulses[J]. Applied Physics B, 80, 35-38(2005).

    [44] Liang H, Sun H Y, Liu Y H et al. Chirp control of femtosecond laser-filamentation-induced snow formation in a cloud chamber[J]. Chinese Optics Letters, 13, 033201(2015).

    [45] Shumakova V, Ališauskas S, Malevich P et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR[J]. Optics Letters, 44, 2173-2176(2019).

    [46] Zhu Z B, Wang T J, Liu Y X et al. Polarization-dependent femtosecond laser filamentation in air[J]. Chinese Optics Letters, 16, 073201(2018).

    [47] Liu C, Zang H W, Li H L et al. Polarization effect on critical power and luminescence in an air filament[J]. Chinese Optics Letters, 15, 120201(2017).

    [48] Mitryukovskiy S, Liu Y, Ding P J et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Letters, 114, 063003(2015).

    [49] Mitryukovskiy S, Liu Y, Ding P J et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses[J]. Optics Express, 22, 12750-12759(2014).

    [50] Guo H, Dong X, Wang T J et al. Polarization dependent clamping intensity inside a femtosecond filament in air[J]. Chinese Optics Letters, 19, 103201(2021).

    [51] Xue J Y, Zhang N, Guo L J et al. Effect of laser repetition rate on the fluorescence characteristic of a long-distance femtosecond laser filament[J]. Optics Letters, 47, 5676-5679(2022).

    [52] Chin S L, Wang T J, Marceau C et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 22, 1-53(2012).

    [53] You Y S, Oh T I, Fallahkhair A B et al. Alignment-dependent terahertz radiation in two-color photoionization of molecules[J]. Physical Review A, 87, 035401(2013).

    [54] Cai H, Wu J, Li H et al. Elongation of femtosecond filament by molecular alignment in air[J]. Optics Express, 17, 21060-21065(2009).

    [55] Yu Z Q, Sun L, Zhang N et al. Anti-correlated plasma and THz pulse generation during two-color laser filamentation in air[J]. Ultrafast Science, 2022, 1-7(2022).

    [56] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 71, 877-879(2000).

    [57] Yao J P, Zeng B, Xu H L et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 84, 051802(2011).

    [58] Gaarde M B, Couairon A. Intensity spikes in laser filamentation: diagnostics and application[J]. Physical Review Letters, 103, 043901(2009).

    [59] Xu S Q, Sun X D, Zeng B et al. Simple method of measuring laser peak intensity inside femtosecond laser filament in air[J]. Optics Express, 20, 299-307(2012).

    [60] Bernhardt J, Liu W, Théberge F et al. Spectroscopic analysis of femtosecond laser plasma filament in air[J]. Optics Communications, 281, 1268-1274(2008).

    [61] Liu W, Bernhardt J, Théberge F et al. Spectroscopic characterization of femtosecond laser filament in argon gas[J]. Journal of Applied Physics, 102, 033111(2007).

    [62] Owada S, Azarm A, Hosseini S et al. Amplified spontaneous C3Πu–B3Πg emission and rotational and vibrational state distributions in C3Πu state of N2 in femtosecond laser induced filament in air[J]. Chemical Physics Letters, 581, 21-25(2013).

    [63] Yu J, Mondelain D, Kasparian J et al. Sonographic probing of laser filaments in air[J]. Applied Optics, 42, 7117-7120(2003).

    [64] Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses[J]. Applied Physics B, 68, 753-756(1999).

    [65] Liu J S, Duan Z L, Zeng Z N et al. Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air[J]. Physical Review E, 72, 026412(2005).

    [66] Yang H, Zhang J, Li Y J et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Physical Review E, 66, 016406(2002).

    [67] Zeng B, Chu W, Gao H et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 84, 063819(2011).

    [68] Sun X D, Zeng T, Gao H et al. Power dependent filamentation of a femtosecond laser pulse in air by focusing with an axicon[J]. Journal of Physics B, 48, 094004(2015).

    [69] Tzortzakis S, Méchain G, Patalano G et al. Concatenation of plasma filaments created in air by femtosecond infrared laser pulses[J]. Applied Physics B, 76, 609-612(2003).

    [70] Polynkin P, Kolesik M, Roberts A et al. Generation of extended plasma channels in air using femtosecond Bessel beams[J]. Optics Express, 16, 15733-15740(2008).

    [71] Hong Z F, Zhang Q B, Ali Rezvani S et al. Extending plasma channel of filamentation with a multi-focal-length beam[J]. Optics Express, 24, 4029-4041(2016).

    [72] Fu Y X, Xiong H, Xu H et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 34, 3752-3754(2009).

    [73] Lü J Q, Li P P, Wang D et al. Extending optical filaments with phase-nested laser beams[J]. Photonics Research, 6, 1130-1136(2018).

    [74] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultrafast laser filamentation[J]. Applied Physics B, 76, 337-340(2003).

    [75] Froula D H, Turnbull D, Davies A S et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 12, 262-265(2018).

    [76] Polynkin P, Kolesik M, Moloney J V et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 324, 229-232(2009).

    [77] Walter D, Bürsing H, Ebert R. Emission of spiral patterns from filaments in the infrared[J]. Optics Express, 18, 24258-24263(2010).

    [78] Hosseini S A, Luo Q, Ferland B et al. Competition of multiple filaments during the propagation of intense femtosecond laser pulses[J]. Physical Review A, 70, 033802(2004).

    [79] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [80] Châteauneuf M, Payeur S, Dubois J et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 92, 091104(2008).

    [81] Zhao J Y, Guo L J, Chu W et al. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate[J]. Optics Letters, 40, 3838-3841(2015).

    [82] Camino A, Hao Z Q, Liu X et al. High spectral power femtosecond supercontinuum source by use of microlens array[J]. Optics Letters, 39, 747-750(2014).

    [83] Panov N A, Kosareva O G, Murtazin I N. Ordered filaments of a femtosecond pulse in the volume of a transparent medium[J]. Journal of Optical Technology, 73, 778-785(2006).

    [84] Liu L, Wang C, Cheng Y et al. Fine control of multiple femtosecond filamentation using a combination of phase plates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, 215404(2011).

    [85] Gao H, Chu W, Yu G L et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics Express, 21, 4612-4622(2013).

    [86] Ionin A A, Iroshnikov N G, Kosareva O G et al. Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror[J]. Journal of the Optical Society of America B, 30, 2257-2262(2013).

    [87] Liu J S, Schroeder H, Chin S L et al. Ultrafast control of multiple filamentation by ultrafast laser pulses[J]. Applied Physics Letters, 87, 161105(2005).

    [88] Liu J P, Tian X Q, Chu C Y et al. Effect of beam ellipticity on femtosecond laser multi-filamentation regulated by π-phase plate[J]. Laser Physics Letters, 17, 085402(2020).

    [89] Dubietis A, Tamosauskas G, Fibich G et al. Multiple filamentation induced by input-beam ellipticity[J]. Optics Letters, 29, 1126-1128(2004).

    [90] Scheller M, Mills M S, Miri M A et al. Externally refuelled optical filaments[J]. Nature Photonics, 8, 297-301(2014).

    [91] Dogariu A, Michael J B, Scully M O et al. High-gain backward lasing in air[J]. Science, 331, 442-445(2011).

    [92] Luo Q, Hosseini A, Liu W W et al. Lasing action in air induced by ultrafast laser filamentation[J]. Optics and Photonics News, 15, 44-47(2004).

    [93] Chu W, Li H L, Ni J L et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 104, 091106(2014).

    [94] Yuan S, Wang T J, Teranishi Y et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 102, 224102(2013).

    [95] Yuan S, Wang T J, Lu P F et al. Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy[J]. Applied Physics Letters, 104, 091113(2014).

    [96] Hosseini S, Azarm A, Daigle J F et al. Filament-induced amplified spontaneous emission in air–hydrocarbons gas mixture[J]. Optics Communications, 316, 61-66(2014).

    [97] Kartashov D, Ališauskas S, Andriukaitis G et al. Free-space nitrogen gas laser driven by a femtosecond filament[J]. Physical Review A, 86, 033831(2012).

    [98] Shneider M N, Baltuška A, Zheltikov A M. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization[J]. Journal of Applied Physics, 110, 083112(2011).

    [99] Sprangle P, Peñano J, Hafizi B et al. Remotely induced atmospheric lasing[J]. Applied Physics Letters, 98, 211102(2011).

    [100] Zeng T, Zhao J Y, Liu W et al. Backward angular distribution of air lasing induced by femtosecond laser filamentation[J]. Laser Physics Letters, 11, 075401(2014).

    [101] Xue J Y, Zeng X, Guo L J et al. High directional aerosol fluorescence distribution affected by Mie scattering during femtosecond laser filamentation in air[J]. Optics & Laser Technology, 161, 109175(2023).

    [102] Ding P J, Mitryukovskiy S, Houard A et al. Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK)[J]. Optics Express, 22, 29964-29977(2014).

    [103] Ni J L, Chu W, Jing C R et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation[J]. Optics Express, 21, 8746-8752(2013).

    [104] Chu W, Li G H, Xie H Q et al. A self-induced white light seeding laser in a femtosecond laser filament[J]. Laser Physics Letters, 11, 015301(2014).

    [105] Liu Y, Brelet Y, Point G et al. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses[J]. Optics Express, 21, 22791-22798(2013).

    [106] Danylo R, Zhang X, Fan Z Q et al. Formation dynamics of excited neutral nitrogen molecules inside femtosecond laser filaments[J]. Physical Review Letters, 123, 243203(2019).

    [107] Xu H L, Azarm A, Bernhardt J et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical Physics, 360, 171-175(2009).

    [108] Kartashov D, Ališauskas S, Baltuška A et al. Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen[J]. Physical Review A, 88, 041805(2013).

    [109] Kartashov D, Ališauskas S, Pugžlys A et al. Theory of a filament initiated nitrogen laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094016(2015).

    [110] Xue J Y, Gao H, Zhang N et al. External focusing dependence of spatial distribution of air lasers during femtosecond laser filamentation in air[J]. Chinese Optics Letters, 19, 081402(2021).

    Jiayun Xue, Pengfei Qi, Lanjun Guo, Nan Zhang, Lie Lin, Weiwei Liu. Research Progress on Spatial Distribution of Fluorescence Induced by Femtosecond Laser Filamentation[J]. Chinese Journal of Lasers, 2023, 50(7): 0708001
    Download Citation