• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802010 (2021)
Zhongyang Deng, Qiang Jia, Bin Feng, and Lei Liu*
Author Affiliations
  • Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0802010 Cite this Article Set citation alerts
    Zhongyang Deng, Qiang Jia, Bin Feng, Lei Liu. Research progress on fabrication and applications of high-performance films by pulsed laser deposition[J]. Chinese Journal of Lasers, 2021, 48(8): 0802010 Copy Citation Text show less
    References

    [1] Smith H M, Turner A F. Vacuum deposited thin films using a ruby laser[J]. Applied Optics, 4, 147(1965). http://www.opticsinfobase.org/abstract.cfm?URI=ao-4-1-147

    [2] Dijkkamp D, Venkatesan T, Wu X D et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high-Tc bulk material[J]. Applied Physics Letters, 51, 619-621(1987). http://scitation.aip.org/content/aip/journal/apl/51/8/10.1063/1.98366

    [3] Kuppusami P, Raghunathan V S. Status of pulsed laser deposition: challenges and opportunities[J]. Surface Engineering, 22, 81-83(2006).

    [4] Cheng Y, Lu Y M, Guo Y L et al. Development of function films prepared by pulsed laser deposition technology[J]. Laser & Optoelectronics Progress, 52, 120003(2015).

    [5] Zhang R M, Li Z H, Zhong Z C et al. Dynamic principle of pulsed laser deposition[M](2011).

    [6] Willmott P R, Huber J R. Pulsed laser vaporization and deposition[J]. Reviews of Modern Physics, 72, 315-328(2000). http://adsabs.harvard.edu/abs/2000RvMP...72..315W

    [7] Wagner G, Lange U, Bente K et al. Defect structure of monocrystalline (001)-oriented Zn0.62Cu0.19In0.19S films grown on GaP by pulsed laser deposition (PLD)[J]. Journal of Crystal Growth, 209, 68-74(2000). http://www.sciencedirect.com/science/article/pii/S0022024899005424

    [8] Li J L, Zhou J, Liu G Z. Effect of substrate temperature on deposition of polycrystalline germanium thin films by pulsed laser[J]. Journal of Materials Science and Engineering, 37, 871-875,966(2019).

    [9] Liang L R, Wei A X, Mo Z. Bi3.95Er0.05Ti3O12 thin films synthesized by pulsed laser deposition technique and their dielectric properties at room temperature[J]. Chinese Journal of Lasers, 45, 0902002(2018).

    [10] Nomura K, Ohta H, Takagi A et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 432, 488-492(2004). http://europepmc.org/abstract/med/15565150

    [11] Fourmont P, Gerlein L F, Fortier F X et al. Highly efficient thermoelectric microgenerators using nearly room temperature pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 10, 10194-10201(2018).

    [12] Aubret A, Houel J, Pereira A et al. Nondestructive encapsulation of CdSe/CdS quantum dots in an inorganic matrix by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 8, 22361-22368(2016). http://pubs.acs.org/doi/10.1021/acsami.6b07367

    [13] Bhandari S, Hao B Y, Waters K et al. Two-dimensional gold quantum dots with tunable bandgaps[J]. ACS Nano, 13, 4347-4353(2019). http://www.ncbi.nlm.nih.gov/pubmed/30946561

    [14] Shen Y, Hong J I, Xu S et al. A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition[J]. Advanced Functional Materials, 20, 703-707(2010). http://dx.doi.org/10.1002/adfm.200901546

    [15] Casari C S, Giannuzzi C S, Russo V. Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas[J]. Carbon, 104, 190-195(2016).

    [16] Yao J D, Zheng Z Q, Yang G W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition[J]. Progress in Materials Science, 106, 100573(2019). http://www.sciencedirect.com/science/article/pii/S0079642519300556

    [17] Serna M I, Yoo S H, Moreno S et al. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control[J]. ACS Nano, 10, 6054-6061(2016). http://pubs.acs.org/doi/abs/10.1021/acsnano.6b01636

    [18] Zubir N S, Zhang H Q, Zou G S et al. Large-area Die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 48, 7562-7572(2019). http://link.springer.com/article/10.1007/s11664-019-07532-9

    [19] Zhao X L, Deng Z Y, Long Y et al. Multifunctional sensing platform with pulsed-laser-deposited silver nanoporous structures[J]. Sensors and Actuators A, 293, 136-144(2019). http://www.sciencedirect.com/science/article/pii/S0924424719303048

    [20] Huerta-Flores A M, Chen J C, Torres-Martínez L M et al. Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution[J]. Fuel, 197, 174-185(2017). http://www.sciencedirect.com/science/article/pii/S001623611730162X

    [21] Caricato A P, Luches A. Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: a review[J]. Applied Physics A, 105, 565-582(2011).

    [22] Vatsya S R, Virk K S. Solution of two-temperature thermal diffusion model of laser-metal interactions[J]. Journal of Laser Applications, 15, 273-278(2003). http://scitation.aip.org/content/lia/journal/jla/15/4/10.2351/1.1619998

    [23] Castillejo M, Ossi P M, Zhigilei L. Lasers in materials science[M](2014).

    [24] Stoian R, Boyle M, Thoss A et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses[J]. Applied Physics Letters, 80, 353-355(2002). http://ieeexplore.ieee.org/xpl/abstractReferences.jsp?arnumber=4866267

    [25] Siew W O, Yapl S S, Yong T K et al. Effects of phase explosion in pulsed laser deposition of nickel thin film and sub-micron droplets[J]. Applied Surface Science, 257, 2775-2778(2011). http://www.sciencedirect.com/science/article/pii/S0169433210014273

    [26] Chen J K, Beraun J E, Tham C L. Ultrafast thermoelasticity for short-pulse laser heating[J]. International Journal of Engineering Science, 42, 793-807(2004).

    [27] Singh R K, Narayan J. Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model[J]. Physical Review B, 41, 8843-8859(1990). http://www.ncbi.nlm.nih.gov/pubmed/9993223

    [28] Farid N, Harilal S S, Ding H et al. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures[J]. Journal of Applied Physics, 115, 033107(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6716864

    [29] Yang Y F. Study on preparation and properties of ZnO thin films by PLD[D]. Wuhan: Huazhong University of Science and Technology(2008).

    [30] Tang W Z. Preparation principle, technology and application of thin film materials[M]. 2nd ed(2003).

    [31] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019). http://pubs.acs.org/doi/10.1021/acsami.9b00307

    [32] Wang W G, Zou G S, Jia Q et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for Die attachment of SiC power electronics[J]. Materials Science and Engineering A, 793, 139894(2020). http://www.sciencedirect.com/science/article/pii/S0921509320309667

    [33] Budner B, Kuźma M, Nasiłowska B et al. Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy[J]. Beilstein Journal of Nanotechnology, 10, 882-893(2019). http://www.researchgate.net/publication/332453783_Fabrication_of_silver_nanoisland_films_by_pulsed_laser_deposition_for_surface-enhanced_Raman_spectroscopy

    [34] Nikov R G, Nedyalkov N N, Atanasov P A et al. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films[J]. Applied Surface Science, 374, 36-41(2016).

    [35] Angelina J T T, Ganesan S, Panicker T M R et al. Pulsed laser deposition of silver nanoparticles on prosthetic heart valve material to prevent bacterial infection[J]. Materials Technology, 32, 148-155(2017).

    [36] Tugui C, Ursu C, Zaltariov M F et al. Silver thin films generated by Pulsed Laser Deposition on plasma-treated surface of silicones to get dielectric elastomer transducers[J]. Surface and Coatings Technology, 358, 282-292(2019). http://www.sciencedirect.com/science/article/abs/pii/S0257897218312192

    [37] Nikov R G, Dikovska A O, Nedyalkov N N et al. Au nanostructure fabrication by pulsed laser deposition in open air: influence of the deposition geometry[J]. Beilstein Journal of Nanotechnology, 8, 2438-2445(2017). http://europepmc.org/articles/PMC5704762/

    [38] Nikov R G, Dikovska A O, Nedyalkov N N et al. Fabrication of Au nanostructures by pulsed laser deposition in air[J]. Proceedings of SPIE, 10226, 102260F(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2597357

    [39] Zanchi C, Lucotti A, Tommasini M et al. Pulsed laser deposition of gold thin films with long-range spatial uniform SERS activity[J]. Applied Physics A, 125, 1-9(2019). http://link.springer.com/article/10.1007/s00339-019-2527-7

    [40] Kesarwani R, Dey P P, Khare A. Correlation between surface scaling behavior and surface plasmon resonance properties of semitransparent nanostructured Cu thin films deposited via PLD[J]. RSC Advances, 9, 7967-7974(2019). http://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra00194h

    [41] Gontad F, Lorusso A, Manousaki A et al. Morphology and structure of Nb thin films grown by pulsed laser deposition at different substrate temperatures[J]. Journal of Materials Science & Technology, 32, 1192-1196(2016).

    [42] Schumacher P, Mayr S G, Rauschenbach B. Topography evolution of germanium thin films synthesized by pulsed laser deposition[J]. AIP Advances, 7, 045115(2017). http://adsabs.harvard.edu/abs/2017AIPA....7d5115S

    [43] Abdellaoui N, Pereira A, Novotny M et al. In situ monitoring of electrical resistance during deposition of Ag and Al thin films by pulsed laser deposition: comparative study[J]. Applied Surface Science, 418, 517-521(2017). http://www.sciencedirect.com/science/article/pii/S0169433216326927

    [44] Zhao W Z, Shen D Z, Zou G S et al. Super black iron nanostructures with broadband ultralow reflectance for efficient photothermal conversion[J]. Applied Surface Science, 521, 146388(2020). http://www.sciencedirect.com/science/article/pii/S0169433220311454

    [45] Verma S, Rao B T, Detty A P et al. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures[J]. Journal of Applied Physics, 117, 133105(2015). http://scitation.aip.org/content/aip/journal/jap/117/13/10.1063/1.4916750/cite/bibtex;jsessionid=toj4y3pzaslz.x-aip-live-02

    [46] Irissou E, Laplante F, Garbarino S et al. Structural and electrochemical characterization of metastable PtAu bulk and surface alloys prepared by crossed-beam pulsed laser deposition[J]. The Journal of Physical Chemistry C, 114, 2192-2199(2010). http://pubs.acs.org/doi/abs/10.1021/jp908524u

    [47] Hamel C, Garbarino S, Irissou É et al. Structural and electrochemical properties of nanocrystalline PtRu alloys prepared by crossed-beam pulsed laser deposition[J]. The Journal of Physical Chemistry C, 114, 18931-18939(2010). http://pubs.acs.org/doi/10.1021/jp105706y

    [48] Jia Q, Zou G S, Wang W G et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 12, 16743-16752(2020). http://pubs.acs.org/doi/10.1021/acsami.9b20731

    [49] Hu P, Tong X L, Hu W et al. Research on the technology of pulsed laser deposition of Pd/Ag films[J]. Laser & Optoelectronics Progress, 52, 013102(2015).

    [50] Wang C Z, Dong K, Wang L Y et al. Ti-Pd alloy template and nanowires array copied from anodic aluminum oxide template by pulsed laser deposition[J]. Integrated Ferroelectrics, 180, 91-101(2017). http://www.tandfonline.com/doi/full/10.1080/10584587.2017.1338505?scroll=top&needAccess=true

    [51] Qu D Q, Ling Y C, Wang J et al. The preparation of flexible Ni-Mn-In thin films on mica substrates by pulsed laser deposition[J]. Journal of Magnetism and Magnetic Materials, 488, 165244(2019). http://www.sciencedirect.com/science/article/pii/S0304885319304299

    [52] Grigorescu C E A, Valerio E, Monnereau O et al. Pulsed laser deposition of Co-based Tailored-Heusler alloys[J]. Applied Surface Science, 253, 8102-8106(2007). http://www.sciencedirect.com/science/article/pii/S0169433207003959

    [53] Cropper M D. Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition[J]. Applied Surface Science, 455, 153-159(2018).

    [54] Lu T W, Feng C S, Wang Z et al. Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition[J]. Applied Surface Science, 494, 72-79(2019).

    [55] Galipaud J, Martin M H, Roué L et al. Pulsed laser deposition of PdCuAu alloy membranes for hydrogen absorption study[J]. The Journal of Physical Chemistry C, 119, 26451-26458(2015). http://pubs.acs.org/doi/10.1021/acs.jpcc.5b07511

    [56] Zhang H X, Feng P X. Fabrication and characterization of few-layer graphene[J]. Carbon, 48, 359-364(2010). http://www.sciencedirect.com/science/article/pii/S0008622309006046

    [57] Koh A T T, Foong Y M, Chua D H C. Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition[J]. Diamond and Related Materials, 25, 98-102(2012).

    [58] Fortgang P, Tite T, Barnier V et al. Robust electrografting on self-organized 3D graphene electrodes[J]. ACS Applied Materials & Interfaces, 8, 1424-1433(2016).

    [59] Juvaid M M, Sarkar S, Gogoi P K et al. Direct growth of wafer-scale, transparent, p-type reduced-graphene-oxide-like thin films by pulsed laser deposition[J]. ACS Nano, 14, 3290-3298(2020). http://pubs.acs.org/doi/10.1021/acsnano.9b08916

    [60] Lu Y M, Huang G J, Wang S et al. Effect of oxygen atmosphere on infrared properties of non-hydrogenated diamond-like carbon films[J]. Chinese Journal of Lasers, 47, 0403005(2020).

    [61] Panda M, Krishnan R, Madapu K K et al. Influence of particulate on surface energy and mechanical property of diamond-like carbon films synthesized by pulsed laser deposition[J]. Applied Surface Science, 484, 1176-1183(2019). http://www.sciencedirect.com/science/article/pii/S016943321931089X

    [62] Popescu A, Stan G, Duta L et al. The role of ambient gas and pressure on the structuring of hard diamond-like carbon films synthesized by pulsed laser deposition[J]. Materials, 8, 3284-3305(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC5455729/

    [63] Panda M, Mangamma G, Krishnan R et al. Nano scale investigation of particulate contribution to diamond like carbon film by pulsed laser deposition[J]. RSC Advances, 6, 6016-6028(2016). http://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra21361d

    [64] Zani A, Dellasega D, Russo V et al. Ultra-low density carbon foams produced by pulsed laser deposition[J]. Carbon, 56, 358-365(2013). http://www.sciencedirect.com/science/article/pii/S000862231300050X

    [65] Dong X M, Liu S B, Song H Y. Carbon film fabricated by femtosecond pulse laser deposition[J]. Chinese Journal of Lasers, 42, 0807002(2015).

    [66] Gobaut B, Orgiani P, Sambri A et al. Role of oxygen deposition pressure in the formation of Ti defect states in TiO2(001) anatase thin films[J]. ACS Applied Materials & Interfaces, 9, 23099-23106(2017). http://www.ncbi.nlm.nih.gov/pubmed/28613812

    [67] Mahjouri-Samani M, Gresback R, Tian M K et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks[J]. Advanced Functional Materials, 24, 6365-6371(2014). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201401440

    [68] Saji K J, Tian K, Snure M et al. 2D tin monoxide-an unexplored p-type van der waals semiconductor: material characteristics and field effect transistors[J]. Advanced Electronic Materials, 2, 1500453(2016). http://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201500453

    [69] Yao J, Zheng Z, Yang G. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation[J]. Nanoscale, 10, 2876-2886(2018).

    [70] Serna M I, Hasan S M N, Nam S et al. Low-temperature deposition of layered SnSe2 for heterojunction diodes[J]. Advanced Materials Interfaces, 5, 1800128(2018).

    [71] Wang H C, Chan C H, Suen C H et al. Magnetotransport properties of layered topological material ZrTe2 thin film[J]. ACS Nano, 13, 6008-6016(2019).

    [72] An F, Qu K, Zhong G K et al. Highly flexible and twistable freestanding single crystalline magnetite film with robust magnetism[J]. Advanced Functional Materials, 30, 2003495(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202003495

    [73] Giuffredi G, Mezzetti A, Perego A et al. Non-equilibrium synthesis of highly active nanostructured, oxygen-incorporated amorphous molybdenum sulfide HER electrocatalyst[J]. Small, 16, 2004047(2020). http://onlinelibrary.wiley.com/doi/10.1002/smll.202004047

    [74] Karnati P, Haque A, Taufique M F N et al. A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique[J]. Nanomaterials, 8, E62(2018).

    [75] Patra N, Prajapat C L, Babu P D et al. Pulsed laser deposited Co2FeSi Heusler alloy thin films: effect of different thermal growth processes[J]. Journal of Alloys and Compounds, 804, 470-485(2019). http://www.sciencedirect.com/science/article/pii/S092583881932482X

    [76] Singh A V, Khodadadi B, Mohammadi J B et al. Bulk single crystal-like structural and magnetic characteristics of epitaxial spinel ferrite thin films with elimination of antiphase boundaries[J]. Advanced Materials, 29, 1701222(2017). http://www.ncbi.nlm.nih.gov/pubmed/28605066

    [77] Tang Y L, Zhu Y L, Ma X L et al. A coherently strained monoclinic [111] PbTiO3 film exhibiting zero Poisson's ratio state[J]. Advanced Functional Materials, 29, 1901687(2019). http://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201901687

    [78] Scheiderer P, Schmitt M, Gabel J et al. Tailoring materials for mottronics: excess oxygen doping of a prototypical Mott insulator[J]. Advanced Materials (Deerfield Beach, Fla.), 30, e1706708(2018).

    [79] Shetty S, Damodaran A, Wang K et al. Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films[J]. Advanced Functional Materials, 29, 1804258(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112756730.html

    [80] Zhang W R, Mazza A R, Skoropata E et al. Applying configurational complexity to the 2D ruddlesden-popper crystal structure[J]. ACS Nano, 14, 13030-13037(2020). http://arxiv.org/abs/2005.11801?context=cond-mat.dis-nn

    [81] Yang Z, Hao J, Yuan S et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials (Deerfield Beach, Fla.), 27, 3748-3754(2015). http://www.ncbi.nlm.nih.gov/pubmed/25973767

    [82] Bellus M Z, Yang Z B, Zereshki P et al. Efficient hole transfer from monolayer WS2 to ultrathin amorphous black phosphorus[J]. Nanoscale Horizons, 4, 236-242(2019). http://pubs.rsc.org/en/content/articlelanding/2019/nh/c8nh00234g#!divAbstract

    [83] Glavin N R, Muratore C, Jespersen M L et al. Nanoelectronics: amorphous boron nitride: a universal, ultrathin dielectric for 2D nanoelectronics[J]. Advanced Functional Materials, 26, 2771(2016). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201670102

    [84] Feng P X, Sajjad M. Few-atomic-layer boron nitride sheets syntheses and applications for semiconductor diodes[J]. Materials Letters, 89, 206-208(2012). http://www.sciencedirect.com/science/article/pii/S0167577X12011639

    [85] Zheng J X, Zheng X H, Shen T et al. Microstructure and triobological behavior of CNx films deposited by iterative pulsed laser deposition[J]. Chinese Journal of Lasers, 39, 0607001(2012).

    [86] Novotný M, Bulir J, Bensalah-Ledoux A et al. Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition[J]. Applied Physics A, 117, 377-381(2014). http://link.springer.com/article/10.1007%2Fs00339-014-8474-4

    [87] Novotný M, Šebera J, Bensalah-Ledoux A et al. The growth of zinc phthalocyanine thin films by pulsed laser deposition[J]. Journal of Materials Research, 31, 163-172(2016). http://adsabs.harvard.edu/abs/2016JMatR..31..163N

    [88] Hussein M T, Mohammed R R. Study the nonlinearity characteristics of organic-semiconductor (CuPc) prepared via pulsed laser deposition technique with different thickness[J]. Nano Hybrids and Composites, 27, 11-20(2019). http://www.scientific.net/NHC.27.11

    [89] Wang X Y, Tang Y Z. Mechanical properties of composite materials[M]. Changsha: National University of Defense Technology press(1988).

    [90] Shin Y J, Kim Y, Kang S J et al. Interface control of ferroelectricity in an SrRuO3 /BaTiO3 /SrRuO3 capacitor and its critical thickness[J]. Advanced Materials, 29, 1602795(2017). http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220170900308808

    [91] Ko E K, Mun J, Lee H G et al. Oxygen vacancy engineering for highly tunable ferromagnetic properties: a case of SrRuO3 ultrathin film with a SrTiO3 capping layer[J]. Advanced Functional Materials, 30, 2001486(2020). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202001486

    [92] Zhong G K, An F, Bitla Y et al. Deterministic, reversible, and nonvolatile low-voltage writing of magnetic domains in epitaxial BaTiO3/Fe3O4 heterostructure[J]. ACS Nano, 12, 9558-9567(2018). http://pubs.acs.org/doi/10.1021/acsnano.8b05284

    [93] Kunturu P, Zachariadis C, Witczak L et al. Tandem Si micropillar array photocathodes with conformal copper oxide and a protection layer by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 11, 41402-41414(2019). http://www.researchgate.net/publication/336594480_Tandem_Si_Micropillar_Array_Photocathodes_with_Conformal_Copper_Oxide_and_a_Protection_Layer_by_Pulsed_Laser_Deposition

    [94] Dong G, Zhou Z, Guan M et al. Thermal driven giant spin dynamics at three-dimensional heteroepitaxial interface in Ni0.5Zn0.5Fe2O4/BaTiO3-pillar nanocomposites[J]. ACS Nano, 12, 3751-3758(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=90a6ebd4d4d1289d2ab948dedbf14bec

    [95] Liu X, Du B S, Sun Y et al. Sensitive room temperature photoluminescence-based sensing of H2S with novel CuO-ZnO nanorods[J]. ACS Applied Materials & Interfaces, 8, 16379-16385(2016). http://pubs.acs.org/doi/10.1021/acsami.6b02455

    [96] Lee D, Gao X, Sun L X et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface[J]. Nature Communications, 11, 1-7(2020). http://www.nature.com/articles/s41467-020-15153-8

    [97] Qi Z M, Tang J L, Misra S et al. Enhancing electrochemical performance of thin film lithium ion battery via introducing tilted metal nanopillars as effective current collectors[J]. Nano Energy, 69, 104381(2020). http://www.sciencedirect.com/science/article/pii/S221128551931095X

    [98] Lu Z J, Xu Y, Yu Y Q et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 30, 1907951(2020). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201907951

    [99] Yao J D, Zheng Z Q, Yang G W. Promoting the performance of layered-material photodetectors by alloy engineering[J]. ACS Applied Materials & Interfaces, 8, 12915-12924(2016). http://pubs.acs.org/doi/10.1021/acsami.6b03691

    [100] Yao J, Yang G. Flexible and high-performance all-2D photodetector for wearable devices[J]. Small (Weinheim an Der Bergstrasse, Germany), 14, e1704524(2018). http://europepmc.org/abstract/MED/29667365

    [101] Yang Z B, Jie W J, Mak C H et al. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse[J]. ACS Nano, 11, 4225-4236(2017). http://europepmc.org/abstract/MED/28316242

    [102] Mo G K, Liu J H, Zou Z L et al. Preparation of low-resistivity GZO thin films using pulsed laser deposition and investigation of optoelectronic properties[J]. Chinese Journal of Lasers, 46, 1003001(2019).

    [103] Chen C, Li H, Jin J J et al. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells[J]. Advanced Energy Materials, 7, 1700758(2017). http://onlinelibrary.wiley.com/doi/10.1002/aenm.201700758

    [104] Kupfer B, Majhi K, Keller D A et al. Thin film Co3O4/TiO2 heterojunction solar cells[J]. Advanced Energy Materials, 5, 1401007(2015). http://onlinelibrary.wiley.com/doi/10.1002/aenm.201401007

    [105] Park J H, Kim D H, Shin S S et al. A hierarchically organized photoelectrode architecture for highly efficient CdS/CdSe-sensitized solar cells[J]. Advanced Energy Materials, 4, 1300395(2014). http://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201300395

    [106] Evans A, Martynczuk J, Stender D et al. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-δCathodes[J]. Advanced Energy Materials, 5, 1400747(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=bb496850fdd343a73b5cbb4d080024ed

    [107] Ju Y W, Hyodo J, Inoishi A et al. Double columnar structure with a nanogradient composite for increased oxygen diffusivity and reduction activity[J]. Advanced Energy Materials, 4, 1400783(2014). http://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201400783

    [108] Pfenninger R, Afyon S, Garbayo I et al. Lithium titanate anode thin films for Li-ion solid state battery based on garnets[J]. Advanced Functional Materials, 28, 1800879(2018). http://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201800879

    [109] Ni S B, Huang P, Chao D L et al. Amorphous GaN@Cu freestanding electrode for high-performance Li-ion batteries[J]. Advanced Functional Materials, 27, 1701808(2017).

    [110] Qi Z M, Jian J, Huang J J et al. LiNi0.5Mn0.3Co0.2O2/Au nanocomposite thin film cathode with enhanced electrochemical properties[J]. Nano Energy, 46, 290-296(2018). http://www.sciencedirect.com/science/article/pii/S2211285518300727

    [111] Mihailescu I N, Bociaga D, Socol G et al. Fabrication of antimicrobial silver-doped carbon structures by combinatorial pulsed laser deposition[J]. International Journal of Pharmaceutics, 515, 592-606(2016). http://www.ncbi.nlm.nih.gov/pubmed/27773854

    [112] Dykas M, Desai S K, Patra A et al. Identification of biofilm inhibitors by screening combinatorial libraries of metal oxide thin films[J]. ACS Applied Materials & Interfaces, 10, 12510-12517(2018).

    [113] Rau J V, Curcio M, Raucci M G et al. Cu-releasing bioactive glass coatings and their in vitro properties[J]. ACS Applied Materials & Interfaces, 11, 5812-5820(2019). http://pubs.acs.org/doi/10.1021/acsami.8b19082

    [114] Popescu-Pelin G, Ristoscu C, Duta L et al. Antimicrobial and cytocompatible bovine hydroxyapatite-alumina-zeolite composite coatings synthesized by pulsed laser deposition from low-cost sustainable natural resources[J]. ACS Sustainable Chemistry & Engineering, 8, 4026-4036(2020). http://pubs.acs.org/doi/10.1021/acssuschemeng.9b05031

    [115] Kim Y W, Sardari S E, Meyer M T et al. An ALD aluminum oxide passivated surface acoustic wave sensor for early biofilm detection[J]. Sensors and Actuators B, 163, 136-145(2012).

    [116] Zhang H, Yang J, Liu H Z et al. Study of YBCO superconducting layer using pulse laser deposition for coated conductor[J]. Journal of Functional Materials, 41, 428-431(2010).

    [117] Porokhov N V, Levin E E, Chukharkin M L et al. Superconducting properties of YBCO thin films grown on [001] quartz substrates by pulsed laser deposition[J]. Physica C, 562, 20-24(2019). http://www.sciencedirect.com/science/article/pii/S0921453418304295

    [118] Ivanov Y P, Soltan S, Albrecht J et al. The route to supercurrent transparent ferromagnetic barriers in superconducting matrix[J]. ACS Nano, 13, 5655-5661(2019). http://pubs.acs.org/doi/10.1021/acsnano.9b00888

    [119] Liu L F, Wang W, Yao Y J et al. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition[J]. Applied Surface Science, 439, 1034-1039(2018). http://www.sciencedirect.com/science/article/pii/S0169433218300394

    [120] Gontad F, Lorusso A, Panareo M et al. Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities[J]. Nuclear Instruments and Methods in Physics Research Section A, 804, 132-136(2015). http://www.sciencedirect.com/science/article/pii/S0168900215011195

    [121] Den J H, Ren T S, Ju L L et al. High-temperature interface superconductivity in bilayer copper oxide films by pulsed laser deposition[J]. Science China Materials, 63, 128-135(2020).

    [122] Feng Z, Yuan J, He G et al. Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition[J]. Scientific Reports, 8, 4039(2018). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840431/

    [123] Panda M, Krishnan R, Krishna N G et al. Tuning the tribological property of PLD deposited DLC-Au nanocomposite thin films[J]. Ceramics International, 45, 8847-8855(2019). http://www.sciencedirect.com/science/article/pii/S0272884219302329

    [124] Feng B, Zou G S, Wang W G et al. A programmable, gradient-composition strategy producing synergistic and ultrahigh sensitivity amplification for flexible pressure sensing[J]. Nano Energy, 74, 104847(2020). http://www.researchgate.net/publication/340943777_A_programmable_gradient-composition_strategy_producing_synergistic_and_ultrahigh_sensitivity_amplification_for_flexible_pressure_sensing

    [125] Atanasova G, Dikovska A O, Dilova T et al. Metal-oxide nanostructures produced by PLD in open air for gas sensor applications[J]. Applied Surface Science, 470, 861-869(2019). http://www.sciencedirect.com/science/article/pii/S0169433218332562

    [126] Misra S, Li L G, Jian J et al. Tailorable Au nanoparticles embedded in epitaxial TiO2 thin films for tunable optical properties[J]. ACS Applied Materials & Interfaces, 10, 32895-32902(2018). http://pubs.acs.org/doi/10.1021/acsami.8b12210

    [127] Khan T M, Mujawar M A, Siewerska K E et al. Atmospheric pulsed laser deposition and thermal annealing of plasmonic silver nanoparticle films[J]. Nanotechnology, 28, 445601(2017).

    [128] Dai S J, Yu J, Mo Z Q et al. Particulate control technology based on pulsed laser deposition[J]. Laser & Optoelectronics Progress, 58, 0100004(2021).

    [129] Lu Y M, Huang G J, Cheng Y et al. Optical and micro-structural properties of the uniform large-area carbon-based films prepared by pulsed laser deposition[J]. Infrared Physics & Technology, 104, 103113(2020). http://www.sciencedirect.com/science/article/pii/S1350449519306838

    [130] Tumino F, Casari C S, Passoni M et al. Pulsed laser deposition of single-layer MoS2 on Au(111): from nanosized crystals to large-area films[J]. Nanoscale Advances, 1, 643-655(2019). http://pubs.rsc.org/en/content/articlelanding/2019/na/c8na00126j/unauth

    [131] Eason R. Pulsed laser deposition of thin films[M]. Hoboken: John Wiley & Sons, Inc.(2006).

    Zhongyang Deng, Qiang Jia, Bin Feng, Lei Liu. Research progress on fabrication and applications of high-performance films by pulsed laser deposition[J]. Chinese Journal of Lasers, 2021, 48(8): 0802010
    Download Citation