• Chinese Journal of Lasers
  • Vol. 44, Issue 7, 703012 (2017)
Guo Bo*, Ouyang Qiuyun, Li Shi, Fang Zaijin, and Wang Pengfei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0703012 Cite this Article Set citation alerts
    Guo Bo, Ouyang Qiuyun, Li Shi, Fang Zaijin, Wang Pengfei. Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite[J]. Chinese Journal of Lasers, 2017, 44(7): 703012 Copy Citation Text show less
    References

    [1] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838.

    [2] Schlager J B, Kawanishi S, Saruwatari M. Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser[J]. Electronics Letters, 1991, 27(22): 2072-2073.

    [3] Deparis O, Kiyan R, Salik E, et al. Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 1999,11(10): 1238-1240.

    [4] Matsas V J, Newson T P, Richardson D J, et al. Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.

    [5] Chen Z, Sun H, Ma S, et al. Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2008, 20(24): 2066-2068.

    [6] Zhang H, Tang D, Zhao L,et al. Dual-wavelength domain wall solitons in a fiber ring laser[J]. Optics Express, 2011, 19(4): 3525-3530.

    [7] Zhao X, Zheng Z, Liu L, et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning[J]. Optics Express, 2011,19(2): 1168-1173.

    [8] Mao D, Lu H. Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime[J]. Journal of the Optical Society of America B, 2012, 29(10): 2819-2826.

    [9] Lin H, Guo C, Ruan S,et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser[J]. IEEE Photonics Journal, 2013, 5(5): 1501807.

    [10] Noske D U, Guy M J, Rottwitt K, et al. Dual-wavelength operation of a passively mode-locked “figure-of-eight” ytterbium-erbium fibre soliton laser[J]. Optics Communications, 1994, 108(4): 297-301.

    [11] Yun L, Liu X, Mao D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiberlaser[J]. Optics Express, 2012, 20(19): 20992-20997.

    [12] Ning Q Y, Wang S K, Luo A P, et al. Bright-dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser[J]. IEEE Photonics Journal, 2012, 4(5): 1647-1652.

    [13] Zhang H, Tang D Y, Wu X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 2009,17(15): 12692-12697.

    [14] Luo Z C, Luo A P, Xu W C. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter[J]. IEEE Photonics Journal, 2011, 3(1): 64-70.

    [15] Chen G W, Li W L, Yang H R, et al. Switchable dual-wavelength fiber laser mode-locked by carbon nanotubes[J]. Journal of Modern Optics, 2015, 62(5): 353-357.

    [16] Liu X, Han D, Sun Z, et al. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes[J]. Scientific Reports, 2013, 3: 2718.

    [17] Song Q Y, Chen G X, Tan X L, et al. Multiwavelength passively mode-locked laser based on single-walled carbon nanotube[J]. Chinese J Lasers, 2014, 41(1): 0102002.

    [18] Wang Y B, Qi X H, Shen Y, et al. Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes[J]. Acta Physica Sinica, 2014, 64(20): 204205.

    [19] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [20] Bonaccorso F, Sun Z, Hasan T,et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

    [21] Martinez A, Fuse K, Xu B, et al. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing[J]. Optics Express, 2010, 18(22): 23054-23061.

    [22] Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122.

    [23] Liu Jiang, Wu Sida, Wang Ke, et al. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J Lasers, 2011, 38(8): 0802001.

    [24] Tian Zhen, Liu Shanliang, Zhang Bingyuan, et al. Graphene mode-locked Er3+ doped fiber pulse laser[J]. Chinese J Lasers, 2011, 38(3): 0302004.

    [25] He Jingliang, Hao Xiaopeng, Xu Jinlong, et al. Ultrafast mode-locked solid-state lasers with grapheme saturable absorber[J]. Acta Optica Sinica, 2011, 31(9):0900138。

    [26] Luo Z Q, Wang J Z, Zhou M, et al. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Laser Physics Letters, 2012, 9(3): 229-233.

    [27] Zhao N, Liu M, Liu H, et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 2014, 22(9): 10906-10913.

    [28] Huang S, Wang Y, Yan P, et al. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser[J]. Optics Express, 2014, 22(10): 11417-11426.

    [29] Zhou J, Luo A, Luo Z,et al. Dual-wavelength single-longitudinal-mode fiber laser with switchable wavelength spacing based on a graphene saturable absorber[J]. Photonics Research, 2015, 3(2): A21-A24.

    [30] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23): 2430-2435.

    [31] Lim G K, Chen Z L, Clark J, et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets[J]. Nature Photonics, 2011, 5(9): 554-560.

    [32] Zhang X L, Zhao X, Liu Z B,et al. Enhanced nonlinear optical properties of graphene-oligothiophene hybrid material[J]. Optics Express, 2009, 17(26): 23959-23964.

    [33] Husaini S, Slagle J E, Murray J M,et al. Broadband saturable absorption and optical limiting in graphene-polymer composites[J]. Applied Physics Letters, 2013, 102(19): 191112.

    [34] Kyoung M, Lee M. Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scantechnique[J]. Optics Communications, 1999, 171(1): 145-148.

    [35] Anija M, Thomas J, Singh N, et al. Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain[J]. Chemical Physics Letters, 2003, 380(1): 223-229.

    [36] Wang J, Han J H, Zhu B H, et al. Third-order nonlinear optical properties of graphene-CdS composites[J]. Chinese J Lasers, 2011, 42(11): 1106006.

    [37] Agrawal G P. Nonlinear fiber optics[M]. 5th ed. San Francisco, CA, USA: Academic, 2013.

    [38] Zhao C, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.

    [39] Guo B, Yao Y, Xiao J, et al. Topological insulator-assisted dual-wavelength fiber laser delivering versatile pulse patterns[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 8-15.

    [40] Li J, Luo H, Wang L, et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662.

    [41] Liu M, Zhao N, Liu H, et al. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(10): 983-986.

    [42] Zhang H, Lu S, Zheng J C, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

    [43] Mao D, Wang Y, Ma C, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

    [44] Yan P, Liu A, Chen Y, et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Optical Materials Express, 2015, 5(3): 479-489.

    [45] Guo B, Yao Y, Yan P G, et al. Dual-wavelength soliton mode-locked fiber laser with a WS2-based fiber taper[J]. IEEE Photonics Technology Letters, 2016, 28(3): 323-326.

    [46] Yan P, Chen H, Yin J, et al. Large-area tungsten disulfide for ultrafast photonics[J]. Nanoscale, 2017, 9: 1871-1877.

    [47] Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

    [48] Qin Z, Xie G, Zhang H,et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

    [49] Guo B, Li S, Zhang K, et al. Hexagonal boron nitride: a rising nonlinear optical material for dual-wavelength soliton generation[D]. Harbin: Harbin Engineering University, 2016.

    CLP Journals

    [1] Li Chen, Lu Xueqi, Yu Caibin, Wu Fan, Wu Yu. Fiber-Optic Acoustic Sensor Based on Multi-Layered Graphene Material[J]. Acta Optica Sinica, 2018, 38(3): 328017

    Guo Bo, Ouyang Qiuyun, Li Shi, Fang Zaijin, Wang Pengfei. Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite[J]. Chinese Journal of Lasers, 2017, 44(7): 703012
    Download Citation