• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 068101 (2020)
Jian Lv1、2、*, Ying Sun1、2, Hanyu Liu1、2、3, and Yanming Ma1、2、3
Author Affiliations
  • 1International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, People’s Republic of China
  • 2State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People’s Republic of China
  • 3International Center of Future Science, Jilin University, Changchun 130012, People’s Republic of China
  • show less
    DOI: 10.1063/5.0033232 Cite this Article
    Jian Lv, Ying Sun, Hanyu Liu, Yanming Ma. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure[J]. Matter and Radiation at Extremes, 2020, 5(6): 068101 Copy Citation Text show less
    References

    [1] C. J. Pickard, Y. Sun, Q. Wu, R. J. Needs, F. Peng, Y. Ma. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 119, 107001(2017).

    [2] N. W. Ashcroft, R. Hoffmann, R. J. Hemley, I. I. Naumov, H. Liu. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990(2017).

    [3] Y. Meng, V. V. Struzhkin, M. Baldini, Z. M. Geballe, M. Somayazulu, R. J. Hemley, M. Ahart, A. K. Mishra. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [4] S. Mozaffari, M. Tkacz, L. Balicas, D. A. Knyazev, P. P. Kong, V. B. Prakapenka, D. E. Graf, S. P. Besedin, M. A. Kuzovnikov, V. S. Minkov, E. Greenberg, M. I. Eremets, A. P. Drozdov, F. F. Balakirev. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528(2019).

    [5] H. Wang, Y. Ma, J. S. Tse, K. Tanaka, T. Iitaka. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A., 109, 6463(2012).

    [6] I. L. Toepke, C. B. Satterthwaite. Superconductivity of hydrides and deuterides of thorium. Phys. Rev. Lett., 25, 741(1970).

    [7] N. W. Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).

    [8] J. J. Gilman. Lithium dihydrogen fluoride—An approach to metallic hydrogen. Phys. Rev. Lett., 26, 546(1971).

    [9] Y. Ma, Y. Wang, J. Lv, L. Zhang. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).

    [10] Y. Li, J. Hao, H. Liu, Y. Ma, Y. Li. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys., 140, 174712(2014).

    [11] V. Ksenofontov, M. I. Eremets, I. A. Troyan, A. P. Drozdov, S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73(2015).

    [12] H. Yu, D. Li, D. Duan, Y. Liu, F. Tian, B. Liu, X. Huang, W. Tian, T. Cui, Z. Zhao. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2014).

    [13] A. Sanna, J. A. Flores-Livas, G. Profeta, R. Arita, L. Boeri, M. Eremets. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1-78(2020).

    [14] Y. Xie, Y. Sun, Y. Ma, J. Lv, H. Liu. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett., 123, 097001(2019).

    [15] A. Salamat, R. Mcbride, M. Debessai, E. Snider, N. Dasenbrock-Gammon, K. V. Lawler, K. Vencatasamy, R. P. Dias, H. Vindana. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373(2020).

    [16] W. A. Coniglio, R. J. Hemley, S. W. Tozer, N. W. Ashcroft, M. Somayazulu, V. W. M. Oliff, A. D. Grockowiak, Y. Meng, T. Helm, M. Ahart, R. Kumar. Hot hydride superconductivity above 550 K(2020).

    Jian Lv, Ying Sun, Hanyu Liu, Yanming Ma. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure[J]. Matter and Radiation at Extremes, 2020, 5(6): 068101
    Download Citation