• Acta Physica Sinica
  • Vol. 68, Issue 20, 203401-1 (2019)
Min-Jie Diwu1 and Xiao-Mian Hu2、*
Author Affiliations
  • 1Graduate School, China Academy of Engineering Physics, Beijing 100088, China
  • 2National Laboratory of Computational Physics, Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    DOI: 10.7498/aps.68.20190884 Cite this Article
    Min-Jie Diwu, Xiao-Mian Hu. Isostructural phase transition of fcc Ce: Molecular dynamics simulations[J]. Acta Physica Sinica, 2019, 68(20): 203401-1 Copy Citation Text show less
    EAM potential for Ce: (a) The pair function Φ(rij) and the density function f(rij); (b) the embedded function F(ρ).Ce的EAM势 (a)对势函数和电子密度分布函数; (b)嵌入能函数
    Fig. 1. EAM potential for Ce: (a) The pair function Φ(rij) and the density function f(rij); (b) the embedded function F(ρ). Ce的EAM势 (a)对势函数和电子密度分布函数; (b)嵌入能函数
    The cold energy of fcc Ce calculated with the newly developed EAM potential.由本文EAM势得出的面心立方Ce的冷能曲线
    Fig. 2. The cold energy of fcc Ce calculated with the newly developed EAM potential.由本文EAM势得出的面心立方Ce的冷能曲线
    Generalized stacking fault energy and generalized twining fault energy curve for (a) α-Ce and (b) γ-Ce.面心立方Ce中的广义层错能和广义孪晶能 (a) α-Ce; (b) γ-Ce
    Fig. 3. Generalized stacking fault energy and generalized twining fault energy curve for (a) α-Ce and (b) γ-Ce. 面心立方Ce中的广义层错能和广义孪晶能 (a) α-Ce; (b) γ-Ce
    Phonon density of states for FCC Ce.面心立方Ce的声子态密度
    Fig. 4. Phonon density of states for FCC Ce.面心立方Ce的声子态密度
    The vibrational entropy Sviband its change ΔSvibbetween two phases (the inset) plotted as functions of temperature.α-Ce和γ-Ce两相的晶格振动熵Svib以及熵差ΔSvib (右下插图)随温度T的变化
    Fig. 5. The vibrational entropy Sviband its change ΔSvibbetween two phases (the inset) plotted as functions of temperature. α-Ce和γ-Ce两相的晶格振动熵Svib以及熵差ΔSvib (右下插图)随温度T的变化
    Phonon dispersion relations for FCC Ce.面心立方Ce的声子色散谱
    Fig. 6. Phonon dispersion relations for FCC Ce.面心立方Ce的声子色散谱
    Isotherms of FCC Ce: (a) NPT, pressure increased; (b) NPT, pressure decreased; (c) NVT.面心立方Ce的等温线 (a) NPT增压; (b) NPT减压; (c) NVT
    Fig. 7. Isotherms of FCC Ce: (a) NPT, pressure increased; (b) NPT, pressure decreased; (c) NVT.面心立方Ce的等温线 (a) NPT增压; (b) NPT减压; (c) NVT
    The path of Ce γ→α and α→γ phase transition.Ce的γ→α和α→γ相变路径
    Fig. 8. The path of Ce γα and αγ phase transition. Ce的γααγ相变路径
    Radial distribution function for zero pressure (black), the A state (red), and the B state (blue) pointed in Fig.7.零压以及图7中A, B两点状态的径向分布函数
    Fig. 9. Radial distribution function for zero pressure (black), the A state (red), and the B state (blue) pointed in Fig.7. 零压以及图7A, B两点状态的径向分布函数
    γ-Ce α-Ce
    实验第一性原理本文EAM实验第一性原理本文EAM
    a05.16[4]5.22[11]5.144.84[4] 4.90[30]4.63[11]4.81
    Ecoh/eV 4.32[4]4.35[11]4.324.3[11]3.76[11]4.3255
    体弹模量/GPa18.18[31]28.3[11]16.7835.0[32], 16.94[33]37.0[34]37.00
    c11 /GPa 26.01[31]23.0652.9[34]59.77
    c12 /GPa 14.26[31]13.6429.1[34]25.62
    c44 /GPa 17.30[31]17.6444.6[34]49.98
    剪切模量/GPa12.73[31]12.4717.26[33]36.82
    Table 1.

    EAM predicted properties of Ce lattice in comparison with experimental and ab initiodata.

    面心立方Ce的基本性质的EAM计算值与实验和第一性原理结果的比较

    γ-Ce α-Ce
    之前的结果本文EAM之前的结果本文EAM
    Eif/eV 3.3[22]1.932.97
    Evf/eV 0.75[22], 2.02[23]0.851.15
    γ(100)/mJ·m–2697[22], 2140[23]391308
    γ(110)/mJ·m–2797[22], 2220[23]442390
    γ(111)/mJ·m–2586[22], 2190[23]297195
    γssf/mJ·m–2486[22],58[37], 16[37], –0.2 [37]457301[37], 311[37], 369[37]734
    γusf/mJ·m–2501[22]543822
    γutf/mJ·m–212[22]7681167
    Table 2.

    Calculated formation energy of lattice defectsin γ-Ce and α-Ce.

    γ-Ce and α-Ce中晶体缺陷的形成能

    Min-Jie Diwu, Xiao-Mian Hu. Isostructural phase transition of fcc Ce: Molecular dynamics simulations[J]. Acta Physica Sinica, 2019, 68(20): 203401-1
    Download Citation