• Acta Physica Sinica
  • Vol. 68, Issue 21, 214702-1 (2019)
Qin Lou1、2、*, Yi-Fan Huang1、2, and Ling Li1、2
Author Affiliations
  • 1School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
  • show less
    DOI: 10.7498/aps.68.20190873 Cite this Article
    Qin Lou, Yi-Fan Huang, Ling Li. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media[J]. Acta Physica Sinica, 2019, 68(21): 214702-1 Copy Citation Text show less
    Relationship between pressure jump across the droplet interfaceand inverse of droplet radius 1/r.液滴内外压力差和半径倒数1/r之间的关系
    Fig. 1. Relationship between pressure jump across the droplet interface and inverse of droplet radius 1/r. 液滴内外压力差 和半径倒数1/r之间的关系
    Steady state contact angles obtained with the different values of static contact angles : (a) ; (b) (c) .不同初始静态接触角时得到的稳态接触角(a) ; (b) (c)
    Fig. 2. Steady state contact angles obtained with the different values of static contact angles : (a) ; (b) (c) . 不同初始静态接触角 时得到的稳态接触角  (a) ; (b) (c)
    Linear relationship between steady state contact angle and the order parameter of a solid wall .稳态接触角与指标参数的线性关系
    Fig. 3. Linear relationship between steady state contact angle and the order parameter of a solid wall . 稳态接触角 与指标参数 的线性关系
    Physical model for the case of T shape channel.T型通道问题物理模型
    Fig. 4. Physical model for the case of T shape channel.T型通道问题物理模型
    Droplet morphology obtained under various values of Ca: (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910.不同Ca数对应的液滴形态 (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910
    Fig. 5. Droplet morphology obtained under various values of Ca: (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910. 不同Ca数对应的液滴形态 (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910
    Droplet dimensionless diameters at different values of in shear thinning power-law fluid. D is diameters of the droplet and H is width of the main channel.在剪切变稀幂律流体中, 不同的数下形成液滴的无量纲直径(其中D是形成的液滴的直径, H是管径的直径)
    Fig. 6. Droplet dimensionless diameters at different values of in shear thinning power-law fluid. D is diameters of the droplet and H is width of the main channel. 在剪切变稀幂律流体中, 不同的 数下形成液滴的无量纲直径(其中D是形成的液滴的直径, H是管径的直径)
    The model for porous media displacement problem.多孔介质驱替模型
    Fig. 7. The model for porous media displacement problem.多孔介质驱替模型
    Final finger patterns obtained under different values of Ca for shear thinning, Newtonian and shear thickening fluids: (a)− (c)n = 0.7; (d)−(f)n =1.0; (g)−(i)n = 1.3.不同的数下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c)n = 0.7; (d)−(f)n =1.0; (g)−(i)n = 1.3
    Fig. 8. Final finger patterns obtained under different values of Ca for shear thinning, Newtonian and shear thickening fluids: (a)− (c)n = 0.7; (d)−(f)n =1.0; (g)−(i)n = 1.3. 不同的 数下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c)n = 0.7; (d)−(f)n =1.0; (g)−(i)n = 1.3
    Schematic diagram of gas-liquid two phase dynamics viscosity obtained under different values of power-law exponent: ; ; .驱替完成时, 不同幂律指数情况下得到的气液两相动力黏度示意图 ; ;
    Fig. 9. Schematic diagram of gas-liquid two phase dynamics viscosity obtained under different values of power-law exponent: ; ; . 驱替完成时, 不同幂律指数情况下得到的气液两相动力黏度示意图  ; ;
    Effects of and power-law exponent non power-law fluid displacement efficiency.数和幂律指数n对幂律流体驱替效率的影响
    Fig. 10. Effects of and power-law exponent non power-law fluid displacement efficiency. 数和幂律指数n对幂律流体驱替效率的影响
    Final finger patterns obtained under different values of viscosity ratios M for shear thinning, Newtonian and shear thickening fluids: (a)−(c)n = 0.7; (d)−(f)n = 1.0; (g)−(i)n = 1.3.不同的动力黏性比M下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c)n = 0.7; (d)−(f)n = 1.0; (g)−(i)n = 1.3
    Fig. 11. Final finger patterns obtained under different values of viscosity ratios M for shear thinning, Newtonian and shear thickening fluids: (a)−(c)n = 0.7; (d)−(f)n = 1.0; (g)−(i)n = 1.3. 不同的动力黏性比M下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c)n = 0.7; (d)−(f)n = 1.0; (g)−(i)n = 1.3
    Effects of viscosity ratio M and power-law exponent n on power-law fluid displacement efficiency.动力黏度比M和幂律指数n对幂律流体驱替效率的影响
    Fig. 12. Effects of viscosity ratio M and power-law exponent n on power-law fluid displacement efficiency. 动力黏度比M和幂律指数n对幂律流体驱替效率的影响
    Final finger patterns obtained under different values of contact angles for shear thinning, Newtonian and shear thickening fluids: (a)−(c); (d)-(f) ; (g)−(i); (j)−(l).不同的润湿性角度下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c); (d)− (f); (g)−(i); (j)−(l)
    Fig. 13. Final finger patterns obtained under different values of contact angles for shear thinning, Newtonian and shear thickening fluids: (a)−(c) ; (d)-(f) ; (g)−(i) ; (j)−(l) . 不同的润湿性角度 下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) ; (d)− (f) ; (g)−(i) ; (j)−(l)
    Effects of contact angles and power-law exponent n on power-law fluid displacement efficiency.润湿性和幂律指数n对幂律流体驱替效率的影响
    Fig. 14. Effects of contact angles and power-law exponent n on power-law fluid displacement efficiency. 润湿性 和幂律指数n对幂律流体驱替效率的影响
    Final finger patterns obtained under different geometric type for shear thinning, Newtonian and shear thickening fluids: (a)− (c)n = 0.4; (d)−(f)n = 0.7; (g)−(i)n = 1.0; (j)−(l)n = 1.3; (m)−(o)n = 1.6.不同的障碍物几何类型, 被驱替液为剪切变稀、牛顿与剪切变稠流体时驱得到的指进形态图 (a)−(c)n = 0.4; (d)− (f)n = 0.7; (g)−(i)n = 1.0; (j)−(l)n = 1.3, (m)−(o)n = 1.6
    Fig. 15. Final finger patterns obtained under different geometric type for shear thinning, Newtonian and shear thickening fluids: (a)− (c)n = 0.4; (d)−(f)n = 0.7; (g)−(i)n = 1.0; (j)−(l)n = 1.3; (m)−(o)n = 1.6. 不同的障碍物几何类型, 被驱替液为剪切变稀、牛顿与剪切变稠流体时驱得到的指进形态图 (a)−(c)n = 0.4; (d)− (f)n = 0.7; (g)−(i)n = 1.0; (j)−(l)n = 1.3, (m)−(o)n = 1.6
    Effects of geometric type and power-law exponent n on power-law fluid displacement efficiency.障碍物几何类型和幂律指数n对幂律流体驱替效率的影响
    Fig. 16. Effects of geometric type and power-law exponent n on power-law fluid displacement efficiency. 障碍物几何类型和幂律指数n对幂律流体驱替效率的影响
    Qin Lou, Yi-Fan Huang, Ling Li. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media[J]. Acta Physica Sinica, 2019, 68(21): 214702-1
    Download Citation