• Infrared Technology
  • Vol. 43, Issue 11, 1023 (2021)
Lei LUO1、2、3, Libin TANG1、3、*, and Wenbin ZUO1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    LUO Lei, TANG Libin, ZUO Wenbin. Research Progress in Ultraviolet Enhanced Image Sensors[J]. Infrared Technology, 2021, 43(11): 1023 Copy Citation Text show less
    References

    [4] Ostergaard J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 140-148.

    [5] Novikova A, Carstensen J M, Zeitler J A, et al. Multispectral UV imaging for determination of the tablet coating thickness[J]. Journal of Pharmaceutical Sciences, 2017, 106(6): 1560-1569.

    [6] Okino T, Yamahira S, Yamada S, et al. A real-time ultraviolet radiation imaging system using an organic photoconductive image sensor[J]. Sensors (Basel), 2018, 18(1): 314.

    [7] Leitherer C, Vacca W D, Conti P S, et al. Hubble space telescope ultraviolet imaging and spectroscopy of the right starburst in the Wolf-Rayet Galaxy NGC 4214[J]. The Astrophysical Journal, 1996, 465(2): 717.

    [8] Mende S B, Heetderks H, Frey H U, et al. Far ultraviolet imaging from the IMAGE spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1-2): 243-270.

    [10] Park J, Seung H, Kim D C, et al. Unconventional image-sensing and light-emitting devices for extended reality[J]. Advanced Functional Materials, 2021, 31(39): 2009281.

    [11] Heavens O S. Handbook of Optical Constants of Solids II[J]. Journal of Modern Optics, 2011, 39(1): 189-189.

    [13] Kagawa Y, Fujii N, Aoyagi K, et al. An advanced Cu-Cu hybrid bonding for novel stacked CMOS image sensor[C]//IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), 2018: 65-67.

    [14] Stern R A, Catura R C, Kimble R, et al. Ultraviolet and extreme ultraviolet response of charge-coupled-device detectors[J]. Optical Engineering, 1987, 26(9): 875-883.

    [15] Muramatsu M, Akahori H, Shibayama K, et al. Greater than 90% QE in visible spectrum perceptible from UV to near IR Hamamatsu thinned back illuminated CCD's[C]// Solid State Sensor Arrays-Development and Applications, 1997, 3019: 2-8.

    [16] Waltham N R, Prydderch M, Mapson-Menard H, et al. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 573(1-2): 250-252.

    [17] Prydderch M, Waltham N, Morrissey Q, et al. A large area CMOS monolithic active pixel sensor for extreme ultraviolet spectroscopy and imaging[C]// Conference on Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V, 2004, 5301: 175-185.

    [18] Blacksberg J, Nikzad S, Hoenk M E, et al. Near-100% quantum efficiency of Delta doped large-format UV-NIR silicon imagers[J]. IEEE Transactions on Electron Devices, 2008, 55(12): 3402-3406.

    [19] Hoenk M E, Dereniak E L, Hartke J P, et al. Delta-doped back-illuminated CMOS imaging arrays: progress and prospects[C]// Infrared Systems and Photoelectronic Technology IV, 2009, 7419: 74190T.

    [20] Nikzad S, Hoenk M E, Greer F, et al. Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3): 365-369.

    [21] Benmoussa A, Stockman Y, Renotte E, et al. EUV high resolution imager on-board solar orbiter: optical design and detector performances[C]//International Conference on Space Optics-ICSO, 2012, DOI: 10.1117/12.2309019.

    [22] Kuroda R, Kawada S, Nasuno S, et al. A FSI CMOS image sensor with 200-1000 nm spectral response and high robustness to ultraviolet light exposure[J]. Ite Technical Report, 2013, 37: 21-24.

    [23] Halain J P, Debaize A, Gillis J M, et al. The dual-gain 10.m back-thinned 3k x 3k CMOS-APS detector of the solar orbiter extreme UV imager[C]// Conference on Space Telescopes and Instrumentation -Ultraviolet to Gamma Ray, 2014: 9144.

    [24] Nasuno S, Wakashima S, Kusuhara F, et al. A CMOS image sensor with 240 μV/e–conversion gain,200 ke–Full well capacity, 190-1000 nm spectral response and high robustness to UV light[J]. ITE Transactions on Media Technology and Applications, 2016, 4(2): 116-122.

    [25] Nikzad S, Hoenk M, Jewell A D, et al. Single photon counting UV solar-blind detectors using silicon and III-Nitride materials[J]. Sensors, 2016, 16(6): 927.

    [26] Gabler D, Henkel C, Thiele S. CMOS integrated UV-photodiodes[C]// Proceedings of the 30th Anniversary Eurosensors Conference -Eurosensors, 2016, 168: 1208-1213.

    [27] Aoyagi Y, Fujihara Y, Murata M, et al. A CMOS image sensor with dual pixel reset voltage for high accuracy ultraviolet light absorption spectral imaging[J]. Japanese Journal of Applied Physics, 2019, 58: 25-28.

    [28] Sipauba Carvalho Da Silva Y R, Kuroda R, Sugawa S. An optical filter-less CMOS image sensor with differential spectral response pixels for simultaneous UV-selective and visible imaging[J]. Sensors (Basel), 2019, 20(1): 13.

    [31] Cowens M W, Blouke M M, Fairchild T, et al. Coronene and liumogen as VUV sensitive coatings for Si CCD imagers: a comparison[J]. Applied Optics, 1980, 19(22): 3727-3728.

    [32] Morrissey P F, Mccandliss S R, Feldman P D, et al. Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Aociety, 1991, 23: 1316.

    [33] Blouke M M, Cowens M W, Hall J E, et al. A UV sensitive CCD detector[C]//Electron Devices Meeting, 1979, DOI: 10.1109/IEDM. 1979.189562.

    [34] Blouke M M, Cowens M W, Hall J E, et al. Ultraviolet downconverting phosphor for use with silicon CCD imagers[J]. Applied Optics, 1980, 19(19): 3318-3321.

    [35] Viehmann W, Butner C L, Cowens M W. Ultraviolet (UV) sensitive phosphors for silicon imaging detectors[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1981, 279: 146-152.

    [36] Damento M A, Barcellos A A, Schempp W V. Stability of lumogen films on CCDs[C]// Charge-Coupled Devices and Solid State Optical Sensors V, 1995, 2415: 204-210.

    [37] Deslandes A, Wedding A B, Clarke S R, et al. Characterization of PVD lumogen films for wavelength conversion applications[C]// Smart Structures, Devices, and Systems II, 2005, 5649: 616-626.

    [45] Biswas P, Kumar V, Kamni. The structural and spectral study of LiSrVO4: Tb3+ phosphor for UV-shifted imaging devices[C]// 2nd International Conference on Recent Advances in Materials and Manufacturing Technologies (IMMT), 2020, 28: 1018-1023.

    [46] Franks W A R, Kiik M J, Nathan A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352-358.

    [48] SHENG X, YU C J, Malyarchuk V, et al. Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4): 314-319.

    [49] TAI Y P, LI X Z, PAN B L. Efficient near-infrared down conversion in Nd3+ -Yb3+ co-doped transparent nanostructured glass ceramics for photovoltaic application[J]. Journal of Luminescence, 2018, 195: 102-108.

    [50] SONG Y H, YOU H P, HUANG Y J, et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties[J]. Inorganic Chemistry, 2010, 49(24): 11499-11504.

    [51] Strmpel C, Mccann M, Beaucarne G, et al. Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials[J]. Solar Energy Materials and Solar Cells, 2007, 91(4): 238-249.

    [52] Kagan C R, Lifshitz E, Sargent E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): aac5523-aac5523.

    [53] DE Arquer F P G, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2017, 2(3): 16100.

    [54] HAN H V, LU A Y, LU L S, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment[J]. ACS Nano, 2016, 10(1): 1454-1461.

    [55] Geyer S M, Scherer J M, Moloto N, et al. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications[J]. ACS Nano, 2011, 5(7): 5566-5571.

    [56] JIANG L, SUN H J, XU B L, et al. The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013, 2013: 1-5.

    [57] YUAN Y, HAN Y, HUANG B, et al. Single-channel UV/VIS dual-band detection with ZnCdS: Mn/ZnS core/shell quantum dots[J]. Nanotech-nology, 2019, 30(7): 075501.

    [58] Sadeghimakki B, Jahed N M S, Sivoththaman S. Spectrally resolved dynamics of synthesized CdSe/ZnS quantum dot/silica nanocrystals for photonic down-shifting applications[J]. IEEE Transactions on Nanotechnology, 2014, 13(4): 825-834.

    [59] Robinson R, Ninkov Z, Cormier D, et al. First report on quantum dot coated CMOS CID arrays for the UV and VUV[C]// UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII, 2013: 8859.

    [60] Knowles A, Williams S, Ninkov Z, et al. Incorporating quantum dots in a Magnesium Fluoride matrix to enable deep-UV sensitivity for standard silicon based imaging detectors[C]// Proceedings of SPIE, 2019: 10982.

    [61] Ichiyama R, Ninkov Z, Williams S, et al. Using quantum-dots to enable deep-UV sensitivity with standard silicon-based imaging detectors[C]// Conference on Photonic Instrumentation Engineering IV, 2017: 10110.

    [62] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.

    [63] ZHANG F, ZHONG H, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542.

    [64] DAI S W, HSU B W, CHEN C Y, et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis[J]. Advanced Materials, 2018, 30(7): 1870048.

    [65] ZHU Q S, ZHENG K B, Abdellah M, et al. Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 14933-14940.

    [66] YANG H S, Noh S H, Suh E H, et al. Enhanced stabilities and production yields of MAPbBr3 quantum dots and their applications as stretchable and self-healable color filters[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4374-4384.

    [67] ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168.

    [68] ZHANG M J, WANG L X, MENG L H, et al. Perovskite quantum dotsembedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018, 6(16): 1800077.

    [69] Klukkert M, Wu J X, Rantanen J, et al. Rapid assessment of tablet film coating quality by multispectral UV imaging[J]. AAPS Pharm Sci Tech, 2016, 17(4): 958-967.

    [70] Wilkes T C, Mcgonigle A J, Pering T D, et al. Ultraviolet imaging with low cost smartphone sensors: Development and application of a raspberry Pi-based UV camera[J]. Sensors (Basel), 2016, 16(10): 1649.

    [71] Dresse L. Wide Field Camera 3 Instrument Handbook,v 8.0[M]. Baltimore: STScI, 2016.

    [72] Halain J P, Debaize A, Gillis J M, et al. The dual-gain 10 μm back-thinned 3k×3k CMOS-APS detector of the solar orbiter extreme UV imager[C]//Conference on Space Telescopes and Instrumentation -Ultraviolet to Gamma Ray, 2014: 9144.

    [73] Tripathi D, Ramaprakash A N, Khan A, et al. The solar ultraviolet imaging telescope on-board Aditya-L1[J]. Current Science, 2017, 113(4): 616-619.

    LUO Lei, TANG Libin, ZUO Wenbin. Research Progress in Ultraviolet Enhanced Image Sensors[J]. Infrared Technology, 2021, 43(11): 1023
    Download Citation