• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 11, 3021 (2022)
XU Jianbing1,2,*, LI Hanshi3, TAN Jimin4, HAN Minfang5, and CHEN Di1,6
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20220433 Cite this Article
    XU Jianbing, LI Hanshi, TAN Jimin, HAN Minfang, CHEN Di. Research Progress on Data Science of Solid Oxide Fuel Cells, Lithium Batteries, CO2 Electroreduction Catalysts[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 3021 Copy Citation Text show less
    References

    [1] MAC DOWELL N, FENNELL P S, SHAH N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nat Clim Chang, 2017, 7(4): 243-249.

    [2] CAI Y, SAM C Y, CHANG T. Nexus between clean energy consumption, economic growth and CO2 emissions[J]. J Clean Prod, 2018, 182: 1001-1011.

    [3] QIAO W, LU H, ZHOU G, et al. A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer[J]. J Clean Prod, 2020, 244: 118612.

    [4] ANDERSON T R, HAWKINS E, JONES P D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models[J]. Endeavour, 2016, 40(3): 178-187.

    [5] LOVELOCK C E, CAHOON D R, FRIESS D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 2015, 526(7574): 559-563.

    [6] HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: status, challenges, and perspectives[J]. Adv Sci, 2019, 6(21): 1900808.

    [7] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76.

    [8] LI B, DUAN Y, LUEBKE D, et al. Advances in CO2 capture technology: A patent review[J]. Appl Energy, 2013, 102: 1439-1447.

    [9] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nat Mater, 2016, 16(1): 16-22.

    [10] BOTU V, RAMPRASAD R. Learning scheme to predict atomic forces and accelerate materials simulations[J]. Phys Rev B, 2015, 92(9): 94306.

    [11] LI Z, LI H, SHAO L. Improving online customer shopping experience with computer vision and machine learning methods[J]. Lect Notes Comput Sci, 2016, 9751: 427-436.

    [12] KIM K jae, AHN H. A recommender system using GA K-means clustering in an online shopping market[J]. Expert Syst Appl, 2008, 34(2): 1200-1209.

    [13] SAMANT P, AGARWAL R. Machine learning techniques for medical diagnosis of diabetes using iris images[J]. Comput Methods Programs Biomed, 2018, 157: 121-128.

    [14] WU M, CHEN L. Image recognition based on deep learning[J]. Proc - 2015 Chinese Autom Congr CAC, 2015, 2016: 542-546.

    [15] LIPPMANN R. An introduction to computing with neural nets[J]. IEEE Assp Mag, 1987, 4(2): 4-22.

    [16] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [17] ZHANG C, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization[J]. Communications of the ACM, 2021, 64(3): 107-115.

    [20] DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.

    [21] GHIABI C, GHAFFARINEJAD A, KAZEMI H, et al. In situ, one-step and co-electrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media[J]. Renew Energy, 2018, 126: 1085-1092.

    [22] MEHMETI A, MCPHAIL S J, PUMIGLIA D, et al. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications[J]. J Power Sources, 2016, 325: 772-785.

    [23] CASCOS V, FERNNDEZ-DAZ M T, ALONSO J A. Structural and electrical characterization of the novel SrCo1-xTixO3-x (x = 0.05, 0.1 and 0.15) perovskites: Evaluation as cathode materials in solid oxide fuel cells[J]. Renew Energy, 2019, 133: 205-215.

    [24] ARRIAGADA J, OLAUSSON P, SELIMOVIC A. Artificial neural network simulator for SOFC performance prediction[J]. J Power Sources, 2002, 112(1): 54-60.

    [25] KANG Y W, LI J, CAO G Y, et al. Dynamic temperature modeling of an SOFC using least squares support vector machines[J]. J Power Sources, 2008, 179(2): 683-692.

    [26] WU X J, HUANG Q, ZHU X J. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM[J]. Int J Hydrogen Energy, 2011, 36(1): 885-892.

    [27] CHEN J, CHEN Y, ZHANG H. Study on Fuel Utilization Dynamic model of a SOFC-GT Hybrid System Based on Deep Learning Technique[C]//E3S Web of Conferences. EDP Sciences, 2019, 113: 1-6.

    [28] SHAO Q, GAO E, MARA T, et al. Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions[J]. Appl Energy, 2020, 260: 114318.

    [29] SONG S, XIONG X, WU X, et al. Modeling the SOFC by BP neural network algorithm[J]. Int J Hydrogen Energy, 2021, 46(38): 20065-20077.

    [30] XU H, MA J, TAN P, et al. Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation[J]. Energy AI, 2020, 1: 100003.

    [31] LI Y, SHEN J, LU J. Constrained model predictive control of a solid oxide fuel cell based on genetic optimization[J]. J Power Sources, 2011, 196(14): 5873-5880.

    [32] NASSEF A M, FATHY A, SAYED E T, et al. Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms[J]. Renew Energy, 2019, 138: 458-464.

    [33] GHORBANI B, VIJAYARAGHAVAN K. Developing a virtual hydrogen sensor for detecting fuel starvation in solid oxide fuel cells using different machine learning algorithms[J]. Int J Hydrogen Energy, 2020, 45(51): 27730-27744.

    [34] WANG Y, WU C, ZHAO S, et al. Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell[J]. Appl Energy, 2022, 315: 119046.

    [35] LI S, CAO H, YANG Y. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification[J]. J Power Sources, 2018, 378(1): 646-659.

    [36] MENG-TING C, XIAO-WEI F, ZHONG-HUA D, et al. Data-Driven Fault Detection for SOFC system based on Random Forest and SVM[C]//2019 Chinese Automation Congress (CAC). IEEE, 2019: 2829-2834.

    [37] ZHANG Z, LI S, XIAO Y, et al. Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning[J]. Appl Energy, 2019, 233-234: 930-942.

    [38] ZHENG Y, WU X long, ZHAO D, et al. Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system[J]. J Power Sources, 2021, 490: 229561.

    [39] SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat Energy, 2019, 4(5): 383-391.

    [40] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. J Power Sources, 2013, 239: 680-688.

    [41] PATIL M A, TAGADE P, HARIHARAN K S, et al. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J]. Appl Energy, 2015, 159: 285-297.

    [42] ZHANG Y Y, TANG Q, ZHANG Y Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nat Commun, 2020, 11(1): 1-6.

    [43] TRAN M K, PANCHAL S, CHAUHAN V, et al. Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery[J]. Int J Energy Res, 2022, 46(2): 786-794.

    [44] ZHAO Y, LIU P, WANG Z, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Appl Energy, 2017, 207: 354-362.

    [45] WU J, ZHANG C, CHEN Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Appl Energy, 2016, 173: 134-140.

    [46] CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. J Power Sources, 2018, 400: 242-255.

    [47] ZAHID T, XU K, LI W, et al. State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles[J]. Energy, 2018, 162: 871-882.

    [48] SHEN S, NEMANI V, LIU J, et al. A hybrid machine learning model for battery cycle life prediction with early cycle data[C]//2020 IEEE Transportation Electrification Conference & Expo (ITEC). IEEE, 2020: 181-184.

    [49] HOUCHINS G, VISWANATHAN V. An accurate machine-learning calculator for optimization of Li-ion battery cathodes[J]. J Chem Phys, 2020, 153(5): 054124.

    [50] JIANG Z, LI J, YANG Y, et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nat Commun, 2020, 11(1): 1-9.

    [51] JOSHI R P, EICKHOLT J, LI L, et al. Machine learning the voltage of electrode materials in metal-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(20): 18494-18503.

    [52] SHEN S, SADOUGHI M, CHEN X, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. J Energy Storage, 2019, 25: 100817.

    [53] WARD L, AGRAWAL A, CHOUDHARY A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials[J]. npj Comput Mater, 2016, 2(1): 1-7.

    [54] MOSES I A, JOSHI R P, OZDEMIR B, et al. Machine learning screening of metal-ion battery electrode materials[J]. ACS Appl Mater Interfaces, 2021, 13(45): 53355-53362.

    [55] ZHOU L, YAO A M, WU Y, et al. Machine Learning Assisted Prediction of Cathode Materials for Zn-Ion Batteries[J]. Adv Theory Simulations, 2021, 4(9): 1-6.

    [56] HONG C, ZHANG Q, HE K, et al. Variations of China’s emission estimates: Response to uncertainties in energy statistics[J]. Atmos Chem Phys, 2017, 17(2): 1227-1239.

    [57] MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations[J]. Int J Greenh Gas Control, 2010, 4(4): 659-667.

    [58] AMINU M D, NABAVI S A, ROCHELLE C A, et al. A review of developments in carbon dioxide storage[J]. Appl Energy, 2017, 208: 1389-1419.

    [59] FU H Q, ZHANG L, ZHENG L R, et al. Enhanced CO2 electroreduction performance over Cl-modified metal catalysts[J]. J Mater Chem A, 2019, 7(20): 12420-12425.

    [60] QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem Soc Rev, 2014, 43(2).631-675.

    [61] HOANG T T H, VERMA S, MA S, et al. Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol[J]. J Am Chem Soc, 2018, 140(17): 5791-5797.

    [62] CHEN A, ZHANG X, CHEN L, et al. A machine learning model on simple features for CO2 reduction electrocatalysts[J]. J Phys Chem C, 2020.22471-22478.

    [63] MA X, LI Z, ACHENIE L E K, et al. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening[J]. J Phys Chem Lett, 2015, 6(18): 3528-3533.

    [64] LI Z, MA X, XIN H. Feature engineering of machine-learning chemisorption models for catalyst design[J]. Catal today, 2017, 280(2): 232-238.

    [65] ULISSI Z W, TANG M T, XIAO J, et al. Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction[J]. ACS Catal, 2017, 7(10): 6600-6608.

    [66] CHEN Y, HUANG Y, CHENG T, et al. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations[J]. J Am Chem Soc, 2019, 141(29): 11651-11657.

    [67] GUSAROV S, STOYANOV S R, SIAHROSTAMI S. Development of fukui function based descriptors for a machine learning study of CO2 reduction[J]. J Phys Chem C, 2020, 124(18): 10079-10084.

    XU Jianbing, LI Hanshi, TAN Jimin, HAN Minfang, CHEN Di. Research Progress on Data Science of Solid Oxide Fuel Cells, Lithium Batteries, CO2 Electroreduction Catalysts[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 3021
    Download Citation