[1] A. Boes, L. Chang, C. Langrock. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).
[2] C. Wang, C. Langrock, A. Marandi. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).
[3] J. Zhao, M. Rüsing, U. A. Javid. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669-19682(2020).
[4] A. Rao, K. Abdelsalam, T. Sjaardema. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W-1cm-2. Opt. Express, 27, 25920-25930(2019).
[5] J. Lu, J. B. Surya, X. Liu. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).
[6] J.-Y. Chen, Z.-H. Ma, Y. M. Sua. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).
[7] L. Ledezma, R. Sekine, Q. Guo. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303-308(2022).
[8] M. Jankowski, N. Jornod, C. Langrock. Quasi-static optical parametric amplification. Optica, 9, 273-279(2022).
[9] J. Zhao, C. Ma, M. Rüsing. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).
[10] G.-T. Xue, X.-H. Tian, C. Zhang. Effect of thickness variations of lithium niobate on insulator waveguide on the frequency spectrum of spontaneous parametric down-conversion. Chin. Phys. B, 30, 110313(2021).
[11] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[12] M. He, M. Xu, Y. Ren. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).
[13] L. Wan, Z. Yang, W. Zhou. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl., 11, 145(2022).
[14] C. Wang, M. Zhang, M. Yu. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).
[15] Y. He, Q.-F. Yang, J. Ling. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).
[16] A. W. Bruch, X. Liu, Z. Gong. Pockels soliton microcomb. Nat. Photonics, 15, 21-27(2021).
[17] C. Op De Beeck, F. M. Mayor, S. Cuyvers. III/V-on-lithium niobate amplifiers and lasers. Optica, 8, 1288-1289(2021).
[18] B. Desiatov, M. Lončar. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett., 115, 121108(2019).
[19] X. Guo, L. Shao, L. He. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res., 10, 1338-1343(2022).
[20] S. Zhu, Y. Zhang, Y. Ren. Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate. Adv. Photonics Res., 4, 2300045(2023).
[21] R. Nehra, R. Sekine, L. Ledezma. Few-cycle vacuum squeezing in nanophotonics. Science, 377, 1333-1337(2022).
[22] H. S. Stokowski, T. P. McKenna, T. Park. Integrated quantum optical phase sensor in thin film lithium niobate. Nat. Commun., 14, 3355(2023).
[23] Q. Guo, R. Sekine, L. Ledezma. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photonics, 16, 625-631(2022).
[24] L. Ledezma, A. Roy, L. Costa. Octave-spanning tunable infrared parametric oscillators in nanophotonics. Sci. Adv., 9, eadf9711(2023).
[25] M. Li, L. Chang, L. Wu. Integrated Pockels laser. Nat. Commun., 13, 5344(2022).
[26] X. Liu, C. Zhang, Y. Pan. Thermally tunable and efficient second-harmonic generation on thin-film lithium niobate with integrated micro-heater. Opt. Lett., 47, 4921-4924(2022).
[27] K. Luke, P. Kharel, C. Reimer. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).
[28] M. Fejer, G. Magel, D. Jundt. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 28, 2631-2654(1992).
[29] X.-H. Tian, W. Zhou, K.-Q. Ren. Effect of dimension variation for second-harmonic generation in lithium niobate on insulator waveguide (Invited). Chin. Opt. Lett., 19, 060015(2021).
[30] G.-T. Xue, Y.-F. Niu, X. Liu. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).
[31] M. Santandrea, M. Stefszky, G. Roeland. Characterisation of fabrication inhomogeneities in Ti:LiNbO3 waveguides. New J. Phys., 21, 123005(2019).
[32] J. Zhao, X. Li, T.-C. Hu. Unveiling the origins of quasi-phase matching spectral imperfections in thin-film lithium niobate frequency doublers. APL Photonics, 8, 126106(2023).
[33] P. S. Kuo. Noncritical phasematching behavior in thin-film lithium niobate frequency converters. Opt. Lett., 47, 54-57(2022).
[34] P.-K. Chen, I. Briggs, C. Cui. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol., 19, 44-50(2023).
[35] F. R. Nash, G. D. Boyd, M. Sargent. Effect of optical inhomogeneities on phase matching in nonlinear crystals. J. Appl. Phys., 41, 2564-2576(1970).
[36] M. Okada, S. Ieiri. Influences of self-induced thermal effects on phase matching in nonlinear optical crystals. IEEE J. Quantum Electron., 7, 560-563(1971).
[37] B.-H. Jonas, V. B. Felix, H. Harald. Tailored second harmonic generation in Ti-diffused PPLN waveguides using micro-heaters. Opt. Express, 32, 6876-6886(2024).
[38] J. Zhao, M. Rüsing, S. Mookherjea. Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Opt. Express, 27, 12025-12038(2019).
[39] J. T. Nagy, R. M. Reano. Submicrometer periodic poling of lithium niobate thin films with bipolar preconditioning pulses. Opt. Mater. Express, 10, 1911-1920(2020).
[40] Y. Niu, C. Lin, X. Liu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm