• Acta Physica Sinica
  • Vol. 69, Issue 18, 184201-1 (2020)
Zhi-Wei Liu, Bin Zhang, and Yu Chen*
Author Affiliations
  • Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
  • show less
    DOI: 10.7498/aps.69.20200313 Cite this Article
    Zhi-Wei Liu, Bin Zhang, Yu Chen. Two-dimensional nanomaterials and their derivatives for laser protection[J]. Acta Physica Sinica, 2020, 69(18): 184201-1 Copy Citation Text show less
    Schematic illustration of different kinds of typical ultrathin 2D nanomaterials[29].
    Fig. 1. Schematic illustration of different kinds of typical ultrathin 2D nanomaterials[29].
    Optical limiting mechanisms: (a) Nonlinear scattering; (b) multi-photon absorption; (c) reverse saturable absorption; (d) free-carrier absorption[11].
    Fig. 2. Optical limiting mechanisms: (a) Nonlinear scattering; (b) multi-photon absorption; (c) reverse saturable absorption; (d) free-carrier absorption[11].
    (a) Synthesis of Au-Fe2O3-RGO composites; open aperture patterns of the samples at (b) 700, (c) 800, and (d) 900 nm[35].
    Fig. 3. (a) Synthesis of Au-Fe2O3-RGO composites; open aperture patterns of the samples at (b) 700, (c) 800, and (d) 900 nm[35].
    (a) Synthesis of GO-Pt-1 and GO-Pt-2; (b) typical open-aperture Z-scan data and (c) optical limiting performance of the samples at 532 nm[27]; (d) schematic illustration of the structure of PF-GO and ZnP-GO (insert shows the photographs of dispersions in DMF: (I) ZnTNP-PAES; (II) GO; (III) ZnP-GO; (IV) PF-GO; (V) PF-RGO; (VI) ZnP-RGO.); open-aperture Z-scan curves with normalized transmittance (open symbols) and scattering signal (solid symbols) for the samples at (e) 532 and (f) 1064 nm[36].
    Fig. 4. (a) Synthesis of GO-Pt-1 and GO-Pt-2; (b) typical open-aperture Z-scan data and (c) optical limiting performance of the samples at 532 nm[27]; (d) schematic illustration of the structure of PF-GO and ZnP-GO (insert shows the photographs of dispersions in DMF: (I) ZnTNP-PAES; (II) GO; (III) ZnP-GO; (IV) PF-GO; (V) PF-RGO; (VI) ZnP-RGO.); open-aperture Z-scan curves with normalized transmittance (open symbols) and scattering signal (solid symbols) for the samples at (e) 532 and (f) 1064 nm[36].
    (a) Synthesis of PFTP-RGO. (b) Variation of the normalized transmittance as a function of input laser intensity for the films: (b1) at 532 nm; (b3) at 1064 nm; the corresponding βeff coefficients as a function of the excitation pulse energy (b2), (b4)[37].
    Fig. 5. (a) Synthesis of PFTP-RGO. (b) Variation of the normalized transmittance as a function of input laser intensity for the films: (b1) at 532 nm; (b3) at 1064 nm; the corresponding βeff coefficients as a function of the excitation pulse energy (b2), (b4)[37].
    (a) Top view of the puckered honeycomb lattice of black phosphorus; (b) lateral view on the lattice in armchair direction. Insets: BP lattice with a six-membered ring in chair configuration highlighted in red; scanning tunneling electron microscopyimage of the BP lattice [42].
    Fig. 6. (a) Top view of the puckered honeycomb lattice of black phosphorus; (b) lateral view on the lattice in armchair direction. Insets: BP lattice with a six-membered ring in chair configuration highlighted in red; scanning tunneling electron microscopyimage of the BP lattice [42].
    (a)−(e) Typical open-aperture Z-scan data with normalized transmittance as a function of the sample positionZ for the samples embedded in PMMA matrix under the excitation of 6 ns pulses at λ = 532 with different energies. The solid lines are the theoretical fitting results. (f) Structure of BP:C60 blends[53].
    Fig. 7. (a)−(e) Typical open-aperture Z-scan data with normalized transmittance as a function of the sample positionZ for the samples embedded in PMMA matrix under the excitation of 6 ns pulses at λ = 532 with different energies. The solid lines are the theoretical fitting results. (f) Structure of BP:C60 blends[53].
    Open-aperture Z-scan fitted data of (a) BP-Big and (b) BP-Small; (c) NLO response of BP nanosheets with variable sizes BP-Big and BP-Small as a function of pulse fluence[54]; open-aperture Z-scan results of the BP dispersion for nanosecond pulse excitation at (d) 532 nm and (e) 1064 nm and femtosecond pulse excitation at (g) 515 nm and (h) 1030 nm; (f) open-aperture Z-scan result and (i) corresponding scattering signal of BP dispersions at a 532 nm ns laser[55].
    Fig. 8. Open-aperture Z-scan fitted data of (a) BP-Big and (b) BP-Small; (c) NLO response of BP nanosheets with variable sizes BP-Big and BP-Small as a function of pulse fluence[54]; open-aperture Z-scan results of the BP dispersion for nanosecond pulse excitation at (d) 532 nm and (e) 1064 nm and femtosecond pulse excitation at (g) 515 nm and (h) 1030 nm; (f) open-aperture Z-scan result and (i) corresponding scattering signal of BP dispersions at a 532 nm ns laser[55].
    (a) Schematic illustration of the fabrication F12PcZn-BP; (b) (I)−(III) typical open-aperture Z-scan data of the samples and (IV) variation in the normalized transmittance as a function of input laser intensity for the PMMA-based films at 532 nm[56].
    Fig. 9. (a) Schematic illustration of the fabrication F12PcZn-BP; (b) (I)−(III) typical open-aperture Z-scan data of the samples and (IV) variation in the normalized transmittance as a function of input laser intensity for the PMMA-based films at 532 nm[56].
    Open (a) and closed (b) aperture Z-scan measurements of h-LiMoS2 and MoS2 at different input laser power, indicated at the top left of each curve, showing saturable absorption and self-focusing behavior of h-LiMoS2 at a lower pumping power[58].
    Fig. 10. Open (a) and closed (b) aperture Z-scan measurements of h-LiMoS2 and MoS2 at different input laser power, indicated at the top left of each curve, showing saturable absorption and self-focusing behavior of h-LiMoS2 at a lower pumping power[58].
    (a) Synthesis and (b), (c) NLO (OL) performance of MoS2-PVK[18,64]
    Fig. 11. (a) Synthesis and (b), (c) NLO (OL) performance of MoS2-PVK[18,64]
    (a) Synthesis of MoS2-PAN and pyro-MoS2-PAN; (b) pyrolytic process of PAN; the Mo 3 d core level XPS spectra of (c) the non-annealed MoS2-PAN and (d) the pyro-MoS2-PAN. The 2 H and 1 T contributions are represented by red and green plots, respectively[65,66].
    Fig. 12. (a) Synthesis of MoS2-PAN and pyro-MoS2-PAN; (b) pyrolytic process of PAN; the Mo 3 d core level XPS spectra of (c) the non-annealed MoS2-PAN and (d) the pyro-MoS2-PAN. The 2 H and 1 T contributions are represented by red and green plots, respectively[65,66].
    (a) Key structural factors that influence the properties of halide perovskites[74]; (b) (I) representative crystal structures of halide perovskites in different dimensions; (II) nanoscale morphologies of halide perovskites; (III) schematic representation of the 2D organic-inorganic perovskites from different cuts of the 3D halide perovskite structure[75].
    Fig. 13. (a) Key structural factors that influence the properties of halide perovskites[74]; (b) (I) representative crystal structures of halide perovskites in different dimensions; (II) nanoscale morphologies of halide perovskites; (III) schematic representation of the 2D organic-inorganic perovskites from different cuts of the 3D halide perovskite structure[75].
    (a) Illustration of halide perovskites based NLO materials; (b) typical open-aperture Z-scan curves of CH3NH3PbI3 and CH3NH3PbI3–xClx at 1064 nm; (c) typical open-aperture Z-scan curves of CH3NH3PbI3 and CH3NH3PbI3–xClx at 532 nm[83].
    Fig. 14. (a) Illustration of halide perovskites based NLO materials; (b) typical open-aperture Z-scan curves of CH3NH3PbI3 and CH3NH3PbI3–xClx at 1064 nm; (c) typical open-aperture Z-scan curves of CH3NH3PbI3 and CH3NH3PbI3–xClx at 532 nm[83].
    Typical open-aperture Z-scan data of the CH3NH3PbI3:PVK/PMMA films with different CH3NH3PbI3:PVK concentrations. The annealing condition: 200 ℃ for 30 min in N2[84].
    Fig. 15. Typical open-aperture Z-scan data of the CH3NH3PbI3:PVK/PMMA films with different CH3NH3PbI3:PVK concentrations. The annealing condition: 200 ℃ for 30 min in N2[84].
    Zhi-Wei Liu, Bin Zhang, Yu Chen. Two-dimensional nanomaterials and their derivatives for laser protection[J]. Acta Physica Sinica, 2020, 69(18): 184201-1
    Download Citation