• Chinese Journal of Lasers
  • Vol. 50, Issue 22, 2209001 (2023)
Liping Tang1、2, Yao Wang3, Genbai Chu4, Fengxiao Li1、2, Liang Wang3, Rifeng Zhou1、2、*, and Bi He3、**
Author Affiliations
  • 1ICT Research Center, Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 3Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • 4Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    DOI: 10.3788/CJL230486 Cite this Article Set citation alerts
    Liping Tang, Yao Wang, Genbai Chu, Fengxiao Li, Liang Wang, Rifeng Zhou, Bi He. Photographic Image Enhancement for Single-Shot X-Ray Radiograph via Ultrafast Laser[J]. Chinese Journal of Lasers, 2023, 50(22): 2209001 Copy Citation Text show less
    References

    [1] Willey T M, Champley K, Hodgin R et al. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers[J]. Journal of Applied Physics, 119, 235901(2016).

    [2] Zhou W M, Yu M H, Zhang T K et al. High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 47, 0500010(2020).

    [3] Suzuki-Vidal F, Clayson T, Stehlé C et al. First radiative shock experiments on the SG-II laser[J]. High Power Laser Science and Engineering, 9, e27(2021).

    [4] Li M, Yao T, Yang Z H et al. Designing a toroidal crystal for monochromatic X-ray imaging of a laser-produced He-like plasma[J]. High Power Laser Science and Engineering, 10, e37(2022).

    [5] Chang Z Q, Zhang R Q, Thibault J B et al. Modeling and pre-treatment of photon-starved CT data for iterative reconstruction[J]. IEEE Transactions on Medical Imaging, 36, 277-287(2017).

    [6] Wang R R, Chen W M, Mao C S et al. Laser-produced plasma He-alpha source for pulse radiography[J]. Chinese Optics Letters, 7, 156-158(2009).

    [7] Shui M, Xi T, Yan Y H et al. Laser-plasma jet driven sub-millimeter diameter aluminum flyer and its gesture diagnosis[J]. Acta Physica Sinica, 71, 095201(2022).

    [8] Chu G B, Yu M H, Shui M et al. Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser[J]. Acta Physica Sinica, 69, 026201(2020).

    [9] Liu S X, Long W, He L et al. Retinex-based fast algorithm for low-light image enhancement[J]. Entropy, 23, 746(2021).

    [10] Yakno M, Mohamad-Saleh J, Ibrahim M Z. Dorsal hand vein image enhancement using fusion of CLAHE and fuzzy adaptive gamma[J]. Sensors, 21, 6445(2021).

    [11] Kumar D, Solanki A K, Ahlawat A K. Luminosity control and contrast enhancement of digital mammograms using combined application of adaptive gamma correction and DWT-SVD[J]. Journal of Sensors, 2022, 4433197(2022).

    [12] Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Transactions on Consumer Electronics, 43, 1-8(1997).

    [13] Wang X W, Chen L X. Contrast enhancement using feature-preserving bi-histogram equalization[J]. Signal, Image and Video Processing, 12, 685-692(2018).

    [14] Zhang W D, Dong L L, Zhang T et al. Enhancing underwater image via color correction and Bi-interval contrast enhancement[J]. Signal Processing: Image Communication, 90, 116030(2021).

    [15] Tang J R, Mat Isa N A. Bi-histogram equalization using modified histogram bins[J]. Applied Soft Computing, 55, 31-43(2017).

    [16] Madmad T, De Vleeschouwer C. Bilateral histogram equalization for X-ray image tone mapping[C], 3507-3511(2019).

    [17] Sahu S M, Singh A K, Ghrera S P et al. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE[J]. Optics & Laser Technology, 110, 87-98(2019).

    [18] Sundaram M, Ramar K, Arumugam N et al. Histogram modified local contrast enhancement for mammogram images[J]. Applied Soft Computing, 11, 5809-5816(2011).

    [19] Li L L, Si Y J, Jia Z H. Medical image enhancement based on CLAHE and unsharp masking in NSCT domain[J]. Journal of Medical Imaging and Health Informatics, 8, 431-438(2018).

    [20] Garg D, Garg N K, Kumar M. Underwater image enhancement using blending of CLAHE and percentile methodologies[J]. Multimedia Tools and Applications, 77, 26545-26561(2018).

    [21] Chang Y K, Jung C, Ke P et al. Automatic contrast-limited adaptive histogram equalization with dual gamma correction[J]. IEEE Access, 6, 11782-11792(2018).

    [22] Parihar A S, Verma O P, Khanna C. Fuzzy-contextual contrast enhancement[J]. IEEE Transactions on Image Processing, 26, 1810-1819(2017).

    [23] Xie S J, Lu Y, Yoon S et al. Intensity variation normalization for finger vein recognition using guided filter based singe scale retinex[J]. Sensors, 15, 17089-17105(2015).

    [24] Wu X M, Sun Y Q, Kimura A et al. Reflectance-oriented probabilistic equalization for image enhancement[C], 1835-1839(2021).

    [25] Fu Q T, Jung C, Xu K Q. Retinex-based perceptual contrast enhancement in images using luminance adaptation[J]. IEEE Access, 6, 61277-61286(2018).

    [26] Ancuti C O, Ancuti C. Single image dehazing by multi-scale fusion[J]. IEEE Transactions on Image Processing, 22, 3271-3282(2013).

    [27] Mertens T, Kautz J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 28, 161-171(2009).

    [28] Joseph J, Sivaraman J, Periyasamy R et al. An objective method to identify optimum clip-limit and histogram specification of contrast limited adaptive histogram equalization for MR images[J]. Biocybernetics and Biomedical Engineering, 37, 489-497(2017).

    [29] Pisano E D, Zong S Q, Hemminger B M et al. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms[J]. Journal of Digital Imaging, 11, 193(1998).

    [30] Rodriguez-Molares A, Rindal O M H, D'Hooge J et al. The generalized contrast-to-noise ratio: a formal definition for lesion detectability[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 745-759(2020).

    [31] Akagi M, Nakamura Y, Higaki T et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J]. European Radiology, 29, 6163-6171(2019).

    [32] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [33] Parsons M S, Sharma A, Hildebolt C. Using correlative properties of neighboring pixels to enhance contrast-to-noise ratio of abnormal hippocampus in patients with intractable epilepsy and mesial temporal sclerosis[J]. Academic Radiology, 26, e1-e8(2019).

    [34] Rodgers G, Schulz G, Deyhle H et al. Optimizing contrast and spatial resolution in hard X-ray tomography of medically relevant tissues[J]. Applied Physics Letters, 116, 023702(2020).

    [35] Tao S Z, Rajendran K, Zhou W et al. Improving iodine contrast to noise ratio using virtual monoenergetic imaging and prior-knowledge-aware iterative denoising (mono-PKAID)[J]. Physics in Medicine and Biology, 64, 105014(2019).

    Liping Tang, Yao Wang, Genbai Chu, Fengxiao Li, Liang Wang, Rifeng Zhou, Bi He. Photographic Image Enhancement for Single-Shot X-Ray Radiograph via Ultrafast Laser[J]. Chinese Journal of Lasers, 2023, 50(22): 2209001
    Download Citation