[1] Li C F. Strategical Thinking on Development of Micro- and Nano-Photonics[J]. Laser & Optoelectronics Progress, 46, 16-22(2009).
[2] Yu J Z[M]. Silicon Photonics(2011).
[3] Hennessy J L, Patterson D A. A New Golden Age for Computer Architecture[J]. Communications of the ACM, 62, 48-60(2019).
[4] Theis T N, Wong H S P. The End of Moore’s Law: A New Beginning for Information Technology[J]. Computing in Science & Engineering, 19, 41-50(2017).
[5] Zhang X Q. Study on the Strategy for China to Develop from a Big Nation to a Great Power in Optical Communication Industry[R](2017).
[6] Zhang X Q, Yu S H. Address the Challenges of Bandwidth and Power Consumption Through Photonics-electronics Convergence[J]. Study on Optical Communications, 1-14(2021).
[7] Yu S H, Zhang X Q[M]. Information Optoelectronics(2019).
[8] Feynman R P, Gilbert D. There’s Plenty of Room at the Bottom[J]. Engineering and Science Magazine, 23, 22-36(1960).
[9] Wetzstein G, Ozcan A, Gigan S et al. Inference in Artificial Intelligence with Deep Optics and Photonics[J]. Nature, 588, 39-47(2020).
[10] Ghosh A, Corves B. Scaling Laws: Science of Miniaturization[M]. Introduction to Micromechanisms and Microactuators, 39-49(2015).
[11] Moore G E. Cramming More Components onto Integrated Circuits, Reprinted from Electronics[J]. IEEE Solid-State Circuits Society Newsletter, 11, 33-35(2006).
[12] Huang B J, Zhang Z, Zhang Z Y et al. Research Progress on Monolithic Integration of Silicon based Optoelectronics with Microelectronics[J]. Micro/nano Electronics and Intelligent Manufacturing, 55-67(2019).
[13] David A B M. Attojoule Optoelectronics for Low-energy Information Processing and Communications[J]. Journal of Lightwave Technology, 35, 346-396(2017).
[15] Liu A Y, Bowers J. Photonic Integration with Epitaxial III–V on Silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 2854542(2018).
[16] Reed G T, Mashanovich G Z, Gardes F Y et al. Silicon Optical Modulators[J]. Nature Photonics, 4, 518-526(2010).
[17] Reed G T, Mashanovich G Z, Gardes F Y et al. Recent Breakthroughs in Carrier Depletion based Silicon Optical Modulators[J]. Nanophotonics, 3, 229-245(2014).
[18] Sakib M, Kumar R, Ma C X et al. A 240 Gb/s PAM4 Siliocon Micro-ring Optical Modulator[C], M2D.4(2022).
[19] Wang C, Zhang M, Chen X et al. Integrated Lithium Niobate Electro-optic Modulators Operating at CMOS-compatible Voltages[J]. Nature, 562, 101-104(2018).
[20] Xu M Y, Zhu Y T, Pittalà F et al. Dual-polarization Thin-film Lithium Niobate In-phase Quadrature Modulators for Terabit-per-second Transmission[J]. Optica, 9, 61-62(2022).
[21] Han C H, Jin M, Tao Y S et al. Ultra-compact Silicon Modulator with 110 GHz Bandwidth[C], Th4C.5(2022).
[22] Hao R. Development of the Silicon Photonic Technology[J]. ZTE Technology Journal, 23, 52-55(2017).
[23] Johnson J E, Bacher K, Schaevitz R et al. Performance and Reliability of Advanced CW Lasers for Silicon Photonics Applications[C], Tu2D.1(2022).
[24] Xiang C, Morton P A, Bowers J E. Ultra-narrow Linewidth Laser based on a Semiconductor Gain Chip and Extended Si3N4 Bragg Grating[J]. Optics Letters, 44, 3825-3828(2019).
[25] Shi W, Tian Y, Gervais A. Scaling Capacity of Fiber-optic Transmission Systems via Silicon Photonics[J]. Nanophotonics, 9, 4629-4663(2020).
[27] Blum R. Integrated Silicon Photonics for High-volume Data Center Applications[C], 2550326(2020).
[28] Jones R, Doussiere P, Driscoll J B et al. Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers[J]. IEEE Nanotechnology Magazine, 13, 17-26(2019).
[29] Guo X H, He A, Su Y K. Recent Advances of Heterogeneously Integrated III–V Laser on Si[J]. Journal of Semiconductors, 40, 63-73(2019).
[30] Chen S, Selvidge J, Hughes E et al. A Pathway to Thin GaAs Virtual Substrate on On‐Axis Si (001) with Ultralow Threading Dislocation Density[J]. Physica Status Solidi, A. Applications and Materials Science EPSS, 218, 202000402(2021).
[31] Margalit N, Xiang C, Bowers S M et al. Perspective on the Future of Silicon Photonics and Electronics[J]. Applied Physics Letters, 118, 220501(2021).
[32] Fathololoumi S, Hui D, Jadhav S et al. 1.6 Tbps Silicon Photonics Integrated Circuit and 800 Gbps Photonic Engine for Switch Co-Packaging Demonstration[J]. Journal of Lightwave Technology, 39, 1155-1161(2021).
[36] Orcutt J S, Gill D M, Proesel J et al. Monolithic Silicon Photonics at 25 Gb/s[C], Th4H.1(2016).
[38] Atabaki A H, Moazeni S, Pavanello F et al. Integrating Photonics with Silicon Nanoelectronics for the Next Generation of Systems on a Chip[J]. Nature, 556, 349-354(2018).
[39] Li H, Sakib M N, Huang D et al. A 106 Gb/s 2.5 Vppd Linear Microring Modulator Driver with Integrated Photocurrent Sensor in 28 nm CMOS[C], M2D.1(2022).
[40] Groen E, Boecker C, Hossain M et al. 6.3 A 10-to-112 Gb/s DSP-DAC-based Transmitter with 1.2 V ppd Output Swing in 7 nm FinFET[C], 9063130(2020).
[41] Wade M, Anderson E, Ardalan S et al. TeraPHY: A Chiplet Technology for Low-power, High-bandwidth In-package Optical I/O[J]. IEEE Micro, 40, 63-71(2020).
[42] Kaveh H, Edwin K, Sergey Y et al. 8 Tbps Co-packaged FPGA and Silicon Photonics Optical IO[C], Th4A.2(2021).
[43] Yole . Silicon Photonics Market and Technology Report 2020[R](2020).
[44] Pérez D, Gasulla I, Capmany J. Programmable Multifunctional Integrated Nanophotonics[J]. Nanophotonics, 7, 1351-1371(2018).
[45] Bogaerts W, Pérez D, Capmany J. et al. Programmable Photonic Circuits[J]. Nature, 586, 207-216(2020).
[46] Sakamoto T, Sato N, Segawa T. Photonics-electronics Convergence Technologies for Disaggregated Computing[J]. NTT Technical Review, 19, 58-64(2021).
[47] Ishizaki T, Yamabe Y. Memory-centric Architecture for Disaggregated Computers[J]. NTT Technical Review, 19, 65-69(2021).
[48] Zhou Z P, Xu P F, Tong X W. Computing on Silicon Photonic Platform[J]. Chinese Lasers, 47, 0600001(2020).
[49] Zhang X Q, Yu S H. Discussion on the Prospect of Informatization and Network Evolution[J]. Study on Optical Communications, 1-6(2021).