• Acta Photonica Sinica
  • Vol. 47, Issue 8, 804001 (2018)
AN Tao*, LIU Dan, and WU Jun-yu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20184708.0804001 Cite this Article
    AN Tao, LIU Dan, WU Jun-yu. Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure[J]. Acta Photonica Sinica, 2018, 47(8): 804001 Copy Citation Text show less
    References

    [1] PEUMANS P, YAKIMOV A, FORREST S R. Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 2003, 93(7): 3693-3723.

    [2] SCHILINSKY P, WALDAUF C, HAUCH J, et al. Polymer photovoltaic detectors: progress and recent developments[J]. Thin Solid Films, 2004, 451-452: 105-108.

    [3] GUERRERO A, MONTCADA N, AJURIA J, et al. Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness[J]. Journal of Materials Chemistry A, 2013, 1(39): 12345-12354.

    [4] CHEN H Y, LO M K F, YANG G, et al. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene[J]. Nature Nanotechnology, 2008, 3(9): 543-547.

    [5] YANG D, ZHOU X, MA D. Fast response organic photodetectors with high detectivity based on rubrene and C60[J]. Organic Electronics, 2013, 14(11): 3019-3023.

    [6] WU S, YANG J, YE W, et al. Study on interface engineering of layer-by-layer structure for applications in organic photodetector[J]. Synthetic Metals, 2018, 235: 16-19.

    [7] DANG M T, HIRSCH L, WANTZ G. P3HT: PCBM, best seller in polymer photovoltaic research.[J]. Advanced Materials, 2011, 23(31): 3597-3602.

    [8] YOU J, CHEN C C, DOU L, et al. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells[J]. Advanced Materials, 2012, 24(38): 5267.

    [9] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

    [10] PIERRE A, ARIAS A C. Solution-processed image sensors on flexible substrates[J]. 2016, 1(4): 043001.

    [11] OSENI S O, MOLA G T. Properties of functional layers in inverted thin film organic solar cells[J]. Solar Energy Materials & Solar Cells, 2017, 160: 241-256.

    [12] PICKETT A, MOHAPATRA A, LAUDARI A, et al. Hybrid ZnO-organic semiconductor interfaces in photodetectors: a comparison of two near-infrared donor-acceptor copolymers[J]. Organic Electronics, 2017, 45: 115-123.

    [13] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.

    [14] BARTYNSKI A N, TRINH C, PANDA A, et al. A fullerene-based organic exciton blocking layer with high electron conductivity[J]. Nano Letters, 2013, 13(7): 3315-3320.

    [15] SCHWARZ C, BASSLER H, BAUER I, et al. Does conjugation help exciton dissociation a study on poly(p-phenylene)s in planar heterojunctions with C60 or TNF[J]. Advanced Materials, 2012, 24(7): 922-925.

    [16] MAQSOOD I, CUNDY L D, BIESECKER M, et al. Monte Carlo simulation of Frster resonance energy transfer in 3D nanoscale organic bulk heterojunction morphologies[J]. Journal of Physical Chemistry C, 2013, 117(41): 21086-21095.

    [17] SAMMITO D, ROMANATO F, ZACCO G, et al. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings[J]. Optics Express, 2012, 20(14): A476-A488.

    [18] LEE E, KIM C. Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode[J]. Optics Express, 2012, 20(S5): A740-A753.

    [19] ZHENG Y, JR W J P, KOMINO T, et al. Highly efficient bulk heterojunction photovoltaic cells based on C70 and tetraphenyldibenzoperiflanthene[J]. Applied Physics Letters, 2013, 102(14): 60.

    [20] HALLS J J M, PICHLER K, FRIEND R H, et al. Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Applied Physics Letters, 1996, 68(22): 3120-3122.

    [21] LEIJTENS T, LIM J, TEUSCHER J, et al. Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells[J]. Advanced Materials, 2013, 25(23): 3227-3233.

    [22] YANG S H, MI Y C, JO S G, et al. Photoresponsive ambipolar transport characteristics of organic thin film transistors using soluble HB-ant-THT and PCBM composites[J]. Synthetic Metals, 2012, 162(3-4): 332-336.

    [23] SHUTTLE C G, HAMILTON R, NELSON J, et al. Measurement of charge-density dependence of carrier mobility in an organic semiconductor blend[J]. Advanced Functional Materials, 2010, 20(5): 698-702.

    [24] LEE J K, MA W L, BRABEC C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. Journal of the American Chemical Society, 2008, 130(11): 3619-3623.

    [25] ABBAS M, TEKIN N. Balanced charge carrier mobilities in bulk heterojunction organic solar cells[J]. Applied Physics Letters, 2012, 101(7): 073302.

    [26] LEI T, DOU J H, PEI J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors[J]. Advanced Materials, 2012, 24(48): 6457.

    [27] VAKHSHOURI K, KOZUB D R, WANG C, et al. Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester blends[J]. Physical Review Letters, 2012, 108(2): 026601.

    [28] JANSSEN, AGUIRRE, GOOVAERTS, et al. Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents[J]. European Physical Journal Applied Physics, 2007, 37(3): 40-43.

    [29] YU D, YANG Y, DURSTOCK M, et al. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices[J]. Acs Nano, 2010, 4(10): 5633.

    [30] ZHAO C, QIAO X, CHEN B, et al. Thermal annealing effect on internal electrical polarization in organic solar cells[J]. Organic Electronics, 2013, 14(9): 2192-2197.

    [31] TANAKA H, ABE Y, MATSUO Y, et al. An amorphous mesophase generated by thermal annealing for high-performance organic photovoltaic devices[J]. Advanced Materials, 2012, 24(26): 3521.

    [32] HOWARD I A, MAUER R, MEISTER M, et al. Effect of morphology on ultrafast free carrier generation in polythiophene: fullerene organic solar cells[J]. Journal of the American Chemical Society, 2010, 132(42): 14866-14876.

    [33] REDDY S Y, KUPPA V K. Molecular dynamics simulations of organic photovoltaic materials: Investigating the formation of π-stacked thiophene clusters in oligothiophene/fullerene blends[J]. Synthetic Metals, 2012, 162(23): 2117-2124.

    AN Tao, LIU Dan, WU Jun-yu. Photoelectric Characteristics of Trichromatic Organic Photodetectors with Hybrid Structure[J]. Acta Photonica Sinica, 2018, 47(8): 804001
    Download Citation