• Photonics Research
  • Vol. 12, Issue 8, 1741 (2024)
Feng Xu1,2,†, Yarong Yu3,†, Yang Liu1,2,†, Yao Chang1,2..., Wenxiang Jiao1,2, Lin Wang1,2, Hopui Ho4, Bei Wu3, Fei Xu1,2, Yanqing Lu1,2,5, Yuanjie Pang3,6 and Guanghui Wang1,2,*|Show fewer author(s)
Author Affiliations
  • 1College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 2Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Nanjing 210093, China
  • 3School of Optical and Electronic Information, Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
  • 5e-mail: yqlu@nju.edu.cn
  • 6e-mail: yuanjie_pang@hust.edu.cn
  • show less
    DOI: 10.1364/PRJ.527376 Cite this Article Set citation alerts
    Feng Xu, Yarong Yu, Yang Liu, Yao Chang, Wenxiang Jiao, Lin Wang, Hopui Ho, Bei Wu, Fei Xu, Yanqing Lu, Yuanjie Pang, Guanghui Wang, "Quantifying trapping stability of optical tweezers with an external flow," Photonics Res. 12, 1741 (2024) Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared-laser beams. Nature, 330, 769-771(1987).

    [2] M. M. Wang, E. Tu, D. E. Raymond. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol., 23, 83-87(2005).

    [3] X. J. Wang, X. B. Wang, P. R. C. Gascoyne. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J. Electrostat., 39, 277-295(1997).

    [4] M. Soltani, J. Lin, R. A. Forties. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nat. Nanotechnol., 9, 448-452(2014).

    [5] M. Kreysing, D. Ott, M. J. Schmidberger. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nat. Commun., 5, 5481(2014).

    [6] C. L. Yuan, H. M. Chen, X. W. Lou. DNA bending stiffness on small length scales. Phys. Rev. Lett., 100, 018102(2008).

    [7] S. Wallin, K. B. Zeldovich, E. I. Shakhnovich. The folding mechanics of a knotted protein. J. Mol. Biol., 368, 884-893(2007).

    [8] A. Ivinskaya, M. I. Petrov, A. A. Bogdanov. Plasmon-assisted optical trapping and anti-trapping. Light: Sci. Appl., 6, e16258(2017).

    [9] C. Renaut, B. Cluzel, J. Dellinger. On chip shapeable optical tweezers. Sci. Rep., 3, 2290(2013).

    [10] F. Ruggeri, M. Krishnan. Lattice diffusion of a single molecule in solution. Phys. Rev. E, 96, 062406(2017).

    [11] Y. Z. Shi, S. Xiong, Y. Zhang. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun., 9, 815(2018).

    [12] J. Witzens, M. Hochberg. Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators. Opt. Express, 19, 7034-7061(2011).

    [13] A. H. J. Yang, S. D. Moore, B. S. Schmidt. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 457, 71-75(2009).

    [14] H. Cai, A. W. Poon. Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. Opt. Lett., 36, 4257-4259(2011).

    [15] S. J. Yoon, D. I. Song, J. Lee. Hopping of single nanoparticles trapped in a plasmonic double-well potential. Nanophotonics, 9, 4729-4735(2020).

    [16] W. X. Jiao, G. H. Wang, Z. F. Ying. Switching of nanoparticles in large-scale hybrid electro-optofluidics integration. Opt. Lett., 41, 2652-2655(2016).

    [17] X. F. Xu, G. H. Wang, W. X. Jiao. Multi-level sorting of nanoparticles on multi-step optical waveguide splitter. Opt. Express, 26, 29262-29271(2018).

    [18] W. H. Xu, Y. Y. Wang, W. X. Jiao. Tunable optofluidic sorting and manipulation on micro-ring resonators from a statistics perspective. Opt. Lett., 44, 3226-3229(2019).

    [19] F. Xu, L. Wang, R. Q. Mu. Levitated 2D manipulation on dielectric metasurface by the tuning of polarization states. Opt. Lett., 49, 530-533(2024).

    [20] A. H. J. Yang, D. Erickson. Stability analysis of optofluidic transport on solid-core waveguiding structures. Nanotechnology, 19, 045704(2008).

    [21] H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284-304(1940).

    [22] O. Brzobohaty, V. Karásek, M. Siler. Static and dynamic behavior of two optically bound microparticles in a standing wave. Opt. Express, 19, 19613-19626(2011).

    [23] A. Simon, A. Libchaber. Escape and synchronization of a Brownian particle. Phys. Rev. Lett., 68, 3375-3378(1992).

    [24] M. Siler, P. Zemanek. Particle jumps between optical traps in a one-dimensional (1D) optical lattice. New J. Phys., 12, 083001(2010).

    [25] B. R. Ferrer, J. R. Gomez-Solano, A. V. Arzola. Fluid viscoelasticity triggers fast transitions of a Brownian particle in a double well optical potential. Phys. Rev. Lett., 126, 108001(2021).

    [26] S. Jahanshahi, H. Lowen, B. ten Hagen. Brownian motion of a circle swimmer in a harmonic trap. Phys. Rev. E, 95, 022606(2017).

    [27] A. S. Panwar, S. Kumar. Brownian dynamics simulations of polymer stretching and transport in a complex electroosmotic flow. J. Chem. Phys., 118, 925-936(2003).

    [28] M. Siler, P. Jakl, O. Brzobohaty. Thermally induced micro-motion by inflection in optical potential. Sci. Rep., 7, 1697(2017).

    [29] B. Srinivas, M. Gopalakrishnan. Temporal cooperativity of motor proteins under constant force: insights from Kramers’ escape problem. Phys. Biol., 16, 016006(2019).

    [30] E. E. Michaelides. Brownian movement and thermophoresis of nanoparticles in liquids. Int. J. Heat. Mass. Transf., 81, 179-187(2015).

    [31] F. Reif, H. L. Scott. Fundamentals of statistical and thermal physics. Am. J. Phys., 66, 164-167(1998).

    [32] D. S. Lemons, A. Gythiel. Paul Langevin’s 1908 paper “On the theory of Brownian motion”. Am. J. Phys., 65, 1079-1081(1997).

    [33] W. Vigilante, O. Lopez, J. Fung. Brownian dynamics simulations of sphere clusters in optical tweezers. Opt. Express, 28, 36131-36146(2020).

    [34] A. S. Bodrova, A. V. Chechkin, A. G. Cherstvy. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Sci. Rep., 6, 30520(2016).

    [35] N. Makris. A rheological analog for Brownian motion with hydrodynamic memory. Phys. Fluids, 33, 072014(2021).

    [36] P. Hanggi, H. Thomas. Stochastic-processes—time evolution, symmetries and linear response. Phys. Rep., 88, 207-319(1982).

    [37] A. Kahle, B. Winkler, B. Hennion. Is Faxen’s correction function applicable to viscosity measurements of silicate melts with the falling sphere method?. J. Non-Newton. Fluid, 112, 203-215(2003).

    [38] P. Reimann. Brownian motors: noisy transport far from equilibrium. Phys. Rep., 361, 57-265(2002).

    [39] D. Pedone, M. Langecker, G. Abstreiter. A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: confined diffusion and narrow escape. Nano Lett., 11, 1561-1567(2011).

    [40] I. Hanasaki, T. Nemoto, Y. Y. Tanaka. Soft trapping lasts longer: dwell time of a Brownian particle varied by potential shape. Phys. Rev. E, 99, 022119(2019).

    [41] W. M. Lee, P. J. Reece, R. F. Marchington. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc., 2, 3226-3238(2007).

    Feng Xu, Yarong Yu, Yang Liu, Yao Chang, Wenxiang Jiao, Lin Wang, Hopui Ho, Bei Wu, Fei Xu, Yanqing Lu, Yuanjie Pang, Guanghui Wang, "Quantifying trapping stability of optical tweezers with an external flow," Photonics Res. 12, 1741 (2024)
    Download Citation