• Frontiers of Optoelectronics
  • Vol. 6, Issue 1, 3 (2013)
Wei JIN*, Jian JU, Hoi Lut HO, Yeuk Lai HOO, and Ailing ZHANG
Author Affiliations
  • Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • show less
    DOI: 10.1007/s12200-012-0301-y Cite this Article
    Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Frontiers of Optoelectronics, 2013, 6(1): 3 Copy Citation Text show less
    References

    [1] Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica singlemode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549

    [2] Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961-963

    [3] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S, Roberts P J, Allan D C. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539

    [4] Broderick N G R, Monro T M, Bennett P J, Richardson D J. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 1999, 24(20): 1395-1397

    [5] Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P, St J. Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25(18): 1325-1327

    [6] Ju J, Jin W, Demokan M S. Properties of a highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1375-1377

    [7] Knight J, Birks T, Russell P, de Sandro J. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1998, 15(3): 748

    [8] Mortensen N A, Folkenberg J R, Nielsen MD, Hansen K P. Modal cutoff and the V parameter in photonic crystal fibers. Optics Letters, 2003, 28(20): 1879-1881

    [9] Nielsen M D, Mortensen N A, Folkenberg J R, Bjarklev A. Modefield radius of photonic crystal fibers expressed by the V parameter. Optics Letters, 2003, 28(23): 2309-2311

    [10] Kuhlmey B T, McPhedran R C, Martijn de Sterke C. Modal cutoff in microstructured optical fibers. Optics Letters, 2002, 27(19): 1684-1686

    [11] Folkenberg J R, Mortensen N A, Hansen K P, Hansen T P, Simonsen H R, Jakobsen C. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Optics Letters, 2003, 28(20): 1882-1884

    [12] Limpert J, Schreiber T, Nolte S, Zellmer H, Tunnermann T, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C. Highpower air-clad large-mode-area photonic crystal fiber laser. Optics Express, 2003, 11(7): 818-823

    [13] Blake J N, Kim B Y, Shaw H J. Fiber-optic modal coupler using periodic microbending. Optics Letters, 1986, 11(3): 177

    [14] Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters, 1986, 11(9): 581-583

    [15] Kim B Y, Blake J N, Engan H E, Shaw H J. All-fiber acousto-optic frequency shifter. Optics Letters, 1986, 11(6): 389-391

    [16] Poole C D, Wiesenfeld J M, McCormick A R, Nelson K T. Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber. Optics Letters, 1992, 17(14): 985-987

    [17] Park H S, Song K Y, Yun S H, Kim B Y. All-fiber wavelengthtunable acoustooptic switches based on intermodal coupling in fibers. Journal of Lightwave Technology, 2002, 20(10): 1864-1868

    [18] Murphy K A, Miller M S, Vengsarkar A M, Claus R O. Ellipticalcore two mode optical-fiber sensor implementation methods. Journal of Lightwave Technology, 1990, 8(11): 1688-1696

    [19] Vengsarkar A M, MichieWC, Jankovic L, Culshaw B, Claus R O. Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature. Journal of Lightwave Technology, 1994, 12(1): 170-177

    [20] Kim B Y, Blake J N, Huang S Y, Shaw H J. Use of highly elliptical core fibers for two-mode fiber devices. Optics Letters, 1987, 12(9): 729-731

    [21] Jin W, Wang Z, Ju J. Two-mode photonic crystal fibers. Optics Express, 2005, 13(6): 2082-2088

    [22] Hong K S, Park H C, Kim B Y, Hwang I K, Jin W, Ju J, Yeom D I. 1000 nm tunable acousto-optic filter based on photonic crystal fiber. Applied Physics Letters, 2008, 92(3): 031110

    [23] Engan H E, Kim B Y, Blake J N, Shaw H J. Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. Journal of Lightwave Technology, 1988, 6(3): 428-436

    [24] Yun S H, Hwang I K, Kim B Y. All-fiber tunable filter and laser based on two-mode fiber. Optics Letters, 1996, 21(1): 27-29

    [25] Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676-680

    [26] Hansen T P, Broeng J, Libori S E B, Knudsen E, Bjarklev A, Jensen J R, Simonsen H. Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13(6): 588-590

    [27] Folkenberg J, Nielsen M, Mortensen N, Jakobsen C, Simonsen H. Polarization maintaining large mode area photonic crystal fiber. Optics Express, 2004, 12(5): 956-960

    [28] Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(1): 182-184

    [29] Ju J, Jin W, Demokan M S. Design of single-polarization singlemode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825-830

    [30] Marcuse D. Light Transmission Optics. New York: Van Nostrand Reinhold, 1982

    [31] White T P, McPhedran R C, de Sterke C M, Botten L C, Steel M J. Confinement losses in microstructured optical fibers. Optics Letters, 2001, 26(21): 1660-1662

    [32] Ju J, Jin W, Demokan M S. Two-mode operation in highly birefringent photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(11): 2472-2474

    [33] Ju J, Wang Z, Jin W, Demokan M S. Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor. IEEE Photonics Technology Letters, 2006, 18(20): 2168-2170

    [34] Agrawal G P. Nonlinear Fiber Optics. New York: Academic Presss, 2007

    [35] Finazzi V, Monro T M, Richardson D J. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America. B, Optical Physics, 2003, 20(7): 1427

    [36] Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R C, Frampton K, Koizumi F, Richardson D, Monro T M. Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12(21): 5082-5087

    [37] Kiang K M, Frampton K, Monro T M, Moore R, Tucknott J, Hewak DW, Richardson D J, Rutt H N. Extruded singlemode nonsilica glass holey optical fibres. Electronics Letters, 2002, 38(12): 546

    [38] Kumar V V R, George A K, Reeves W H, Knight J C, Russell P St J, Omenetto F G, Taylor A J. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520-1525

    [39] Kumar V V R, George A K, Knight J C, Russell P St J. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20): 2641-2645

    [40] Monro TM,West Y D, Hewak DW, Broderick N G R, Richardson D J. Chalcogenide holey fibres. Electronics Letters, 2000, 36(24): 1998

    [41] Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 2001, 9(13): 687-697

    [42] Reeves W H, Knight J C, Russell P St J, Roberts P J. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14): 609-613

    [43] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion. Optics Express, 2003, 11(8): 843-852

    [44] Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 2003, 11(13): 1503-1509

    [45] Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters, 2003, 28(12): 989-991

    [46] Shen L P, Huang W P, Jian S S. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 2003, 21(7): 1644-1651

    [47] Hoo Y L, Jin W, Ju J, Ho H L, Wang D N. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion. Optics Communications, 2004, 242(4-6): 327-332

    [48] Hoo Y L, Jin W, Ho H L, Wang D N, Windeler R S. Evanescentwave gas sensing using microstructure fiber. Optical Engineering (Redondo Beach, Calif.), 2002, 41(1): 8-9

    [49] Hoo Y L, Jin W, Shi C Z, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509-3515

    [50] Stolen R H, Lee C, Jain R K. Development of the stimulated Raman spectrum in single-mode silica fibers. Journal of the Optical Society of America. B, Optical Physics, 1984, 1(4): 652

    [51] Baldeck P L, Alfano R R. Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. Journal of Lightwave Technology, 1987, 5(12): 1712-1715

    [52] Ilev I, Kumagai H, Toyoda K, Koprinkov I. Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. Applied Optics, 1996, 35(15): 2548-2553

    [53] Ranka J K,Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25-27

    [54] Coen S, Chau A H C, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, 26(17): 1356-1358

    [55] Coen S, Chau A H L, Leonhardt R, Harvey J D, Knight J C, Wadsworth W J, Russell P, St J. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 753-764

    [56] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J, Coen S. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America. B, Optical Physics, 2002, 19(4): 765-771

    [57] Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers. Optics Letters, 2002, 27(11): 924-926

    [58] Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540

    [59] Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A K, Knight J C, Russell P St J. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. Optics Express, 2003, 11(24): 3196-3201

    [60] Prabhu M, Taniguchi A, Hirose S, Lu J, Musha M, Shirakawa A, Ueda K. Supercontinuum generation using Raman fiber laser. Applied Physics. B, Lasers and Optics, 2003, 77(2-3): 205-210

    [61] Abeeluck A K, Headley C, Jorgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Optics Letters, 2004, 29(18): 2163-2165

    [62] Avdokhin A V, Popov S V, Taylor J R. Continuous-wave, highpower, Raman continuum generation in holey fibers. Optics Letters, 2003, 28(15): 1353-1355

    [63] Abeeluck A K, Headley C. Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Optics Letters, 2005, 30(1): 61-63

    [64] Agrawal G P. Application of Nonlinear Fiber Optics, New York: Academic Press, 2008

    [65] Kano H, Hamaguchi H. Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2006, 37(1-3): 411-415

    [66] Nagahara T, Imura K, Okamoto H. Time-resolved scanning nearfield optical microscopy with supercontinuum light pulses generated in microstructure fiber. Review of Scientific Instruments, 2004, 75(11): 4528

    [67] Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 2001, 26(9): 608-610

    [68] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hansch T W. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters, 2000, 84(22): 5102-5105

    [69] Holzwarth R, Udem T, Hansch T W, Knight J C, Wadsworth W J, Russell P St J. Optical frequency synthesizer for precision spectroscopy. Physical Review Letters, 2000, 85(11): 2264-2267

    [70] Takara H, Ohara T, Sato K. Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Electronics Letters, 2003, 39(14): 1078

    [71] Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel  10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15(12): 1689-1691

    [72] Monro T M, Richardson D J, Bennett P J. Developing holey fibres for evanescent field devices. Electronics Letters, 1999, 35(14): 1188

    [73] Stewart G, Norris J, Clark D F, Culshaw B. Evanescent-wave chemical sensors-a theoretical evaluation. International Journal of Optoelectronics, 1991, 6(3): 227-238

    [74] Stewart G, Jin W, Culshaw B. Prospects for fibre-optic evanescentfield gas sensors using absorption in the near-infrared. Sensors and Actuators. B, Chemical, 1997, 38(1-3): 42-47

    [75] Ho H L, Hoo Y L, Jin W, Ju J, Wang D N, Windeler R S, Li Q. Optimizing microstructured optical fibers for evanescent wave gas sensing. Sensors and Actuators. B, Chemical, 2007, 122(1): 289-294

    [76] Cussler E L. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University, 1997

    [77] Smith C M, Venkataraman N, Gallagher M T, Müller D, West J A, Borrelli N F, Allan D C, Koch K W. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 2003, 424(6949): 657-659

    [78] Roberts P J, Couny F, Sabert H, Mangan B J,Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C, St J, Russell P. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 2005, 13(1): 236-244

    [79] Amezcua-Correa R, Broderick N G R, Petrovich M N, Poletti F, Richardson D J. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Optics Express, 2007, 15(26): 17577-17586

    [80] Chen X, Li M J, Venkataraman N, Gallagher M T, Wood W A, Crowley A M, Carberry J P, Zenteno L A, Koch K W. Highly birefringent hollow-core photonic bandgap fiber. Optics Express, 2004, 12(16): 3888-3893

    [81] Benabid F, Couny F, Knight J C, Birks T A, Russell P St J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 2005, 434(7032): 488-491

    [82] Thapa R, Knabe K, Corwin K L, Washburn B R. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Optics Express, 2006, 14(21): 9576-9583

    [83] Hensley C J, Broaddus D H, Schaffer C B, Gaeta A L. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Optics Express, 2007, 15(11): 6690-6695

    [84] Hoo Y L, Jin W, Ho H L, Ju J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical, 2005, 105(2): 183-186

    [85] Kornaszewski L W, Gayraud N, Stone J M, Macpherson W N, George A K, Knight J C, Hand D P, Reid D T. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Optics Express, 2007, 15(18): 11219-11224

    [86] Cubillas A M, Hald J, Petersen J C. High resolution spectroscopy of ammonia in a hollow-core fiber. Optics Express, 2008, 16(6): 3976-3985

    [87] Benabid F, Knight J C, Antonopoulos G, Russell P, St J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399-402

    [88] Henningsen J, Hald J, Peterson J C. Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers. Optics Express, 2005, 13(26): 10475-10482

    [89] Benabid F, Light P S, Couny F, Russell P, St J. Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Optics Express, 2005, 13(15): 5694-5703

    [90] Fini J M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology, 2004, 15(6): 1120-1128

    [91] De Matos C J S, Cordeiro C M B, Dos Santos E M, Ong J S K, Bozolan A, Brito Cruz C H. Liquid-core, liquid-cladding photonic crystal fibers. Optics Express, 2007, 15(18): 11207-11212

    [92] Xiao L, Jin W, Demokan M S, Ho H L, Hoo Y L, Zhao C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Optics Express, 2005, 13(22): 9014-9022

    [93] Han Y, Oo M K K, Zhu Y N, Xiao L M, Demohan M S, Jin W, Du H. Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman scattering. Optical Engineering (Redondo Beach, Calif.), 2008, 47(4): 040502

    [94] Xuan H F, Jin W, Ju J, Ho H L, Zhang M, Liao Y B. Low-contrast photonic bandgap fibers and their potential applications in liquidbase sensors. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6619: 36

    [95] Xiao L M, Jin W, Demokan M S. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs. Optics Express, 2007, 15(24): 15637-15647

    [96] Wang Y P, Tan X L, Jin W, Liu S J, Ying D Q, Hoo Y L. Improved bending property of half-filled photonic crystal fiber. Optics Express, 2010, 18(12): 12197-12202

    [97] Wang Y P, Tan X L, Jin W, Ying D Q, Hoo Y L, Liu S J. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications. Optics Letters, 2010, 35(1): 88-90

    [98] Terrel M, Digonnet M J F, Fan S. Polarization controller for hollow-core fiber. Optics Letters, 2007, 32(11): 1524-1526

    [99] Pang M, Jin W. A hollow-core photonic bandgap fiber polarization controller. Optics Letters, 2011, 36(1): 16-18

    [100] Ozcan A, Tewary A, Digonnet M J F, Kino G S. Observation of mode coupling in bitapered air-core photonic bandgap fibers. Optics Communications, 2007, 271(2): 391-395

    [101] Wang Y P, Jin W, Ju J, Xuan H F, Ho H L, Xiao L M, Wang D N. Long period gratings in air-core photonic bandgap fibers. Optics Express, 2008, 16(4): 2784-2790

    [102] Jin L, Jin W, Ju J, Wang Y P. Investigation of long-period grating resonances in hollow-core photonic bandgap fibers. Journal of Lightwave Technology, 2011, 29(11): 1708-1714

    [103] Xuan H F, Jin W, Ju J, Wang Y P, Zhang M, Liao Y B, Chen M H. Hollow-core photonic bandgap fiber polarizer. Optics Letters, 2008, 33(8): 845-847

    [104] Hoo Y L, Jin W, Ho H L, Ji J, Wang D N. Gas diffusion measurement using hollow-core photonic bandgap fiber. Sensors and Actuators. B, Chemical, 2005, 105(2): 183-186

    [105] Hoo Y L, Liu S J, Ho H L, Jin W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonics Technology Letters, 2010, 22(5): 296-298

    [106] Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber. Optics Express, 2009, 17(13): 11088-11097

    [107] Xiao L, Demokan M S, Jin W, Wang Y, Zhao C L. Fusion splicing photonic crystal fibers and conventional single-mode Fibers: microhole collapse effect. Journal of Lightwave Technology, 2007, 25(11): 3563-3574

    [108] Xiao L, Jin W, Demokan MS. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges. Optics Letters, 2007, 32(2): 115-117

    Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Frontiers of Optoelectronics, 2013, 6(1): 3
    Download Citation