• Acta Physica Sinica
  • Vol. 69, Issue 7, 070302-1 (2020)
Jing-Nan Wu1、2, Zhi-Hao Xu1、2、*, Zhan-Peng Lu1、2, and Yun-Bo Zhang1
Author Affiliations
  • 1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.7498/aps.69.20191868 Cite this Article
    Jing-Nan Wu, Zhi-Hao Xu, Zhan-Peng Lu, Yun-Bo Zhang. Topological quantum phase transitions in one-dimensional p-wave superconductors with modulated chemical potentials[J]. Acta Physica Sinica, 2020, 69(7): 070302-1 Copy Citation Text show less

    Abstract

    We consider a one-dimensional p-wave superconducting quantum wire with the modulated chemical potential, which is described by $\hat{H}= \displaystyle\sum\nolimits_{i}\left[ \left( -t\hat{c}_{i}^{\dagger }\hat{c}_{i+1}+\Delta \hat{c}_{i}\hat{c}_{i+1}+ h.c.\right) +V_{i}\hat{n}_{i}\right]$, $V_{i}=V\dfrac{\cos \left( 2{\text{π}} i\alpha + \delta \right) }{1-b\cos \left( 2{\text{π}} i\alpha+\delta \right) }$ and can be solved by the Bogoliubov-de Gennes method. When $b=0$, $\alpha$ is a rational number, the system undergoes a transition from topologically nontrivial phase to topologically trivial phase which is accompanied by the disappearance of the Majorana fermions and the changing of the $Z_2$ topological invariant of the bulk system. We find the phase transition strongly depends on the strength of potential V and the phase shift $\delta$. For some certain special parameters $\alpha$ and $\delta$, the critical strength of the phase transition is infinity. For the incommensurate case, i.e. $\alpha=(\sqrt{5}-1)/2$, the phase diagram is identified by analyzing the low-energy spectrum, the amplitudes of the lowest excitation states, the $Z_2$ topological invariant and the inverse participation ratio (IPR) which characterizes the localization of the wave functions. Three phases emerge in such case for $\delta=0$, topologically nontrivial superconductor, topologically trivial superconductor and topologically trivial Anderson insulator. For a topologically nontrivial superconductor, it displays zero-energy Majorana fermions with a $Z_2$ topological invariant. By calculating the IPR, we find the lowest excitation states of the topologically trivial superconductor and topologically trivial Anderson insulator show different scaling features. For a topologically trivial superconductor, the IPR of the lowest excitation state tends to zero with the increase of the size, while it keeps a finite value for different sizes in the trivial Anderson localization phase.
    $\hat{H} = \sum\limits_{i}\!\left[\!\left( -t\hat{c}_{i}^{\dagger }\hat{c}_{i+1}+\varDelta \hat{c}_{i}\hat{c}_{i+1}+ h.c.\right) +V_{i}\hat{n}_{i}\!\right], $(1)

    View in Article

    $ V_{i} = V\frac{\cos \left( 2{\text{π}} i\alpha + \delta \right) }{1-b\cos \left( 2{\text{π}} i\alpha+\delta \right) }, $(2)

    View in Article

    $ \hat{\eta}_{n}^{\dagger} = \sum\limits_{i = 1}^{L}\left[ u_{n,i}\hat{c}_{i}^{\dagger }+\nu_{n,i}\hat{c}_{i}\right], $(3)

    View in Article

    $ \left( {\begin{array}{*{20}{c}} {\hat h}&{\hat \varDelta }\\ { - \hat \varDelta }&{ - \hat h} \end{array}} \right)\left( {\begin{aligned} {{u_n}}\\ {{\nu _n}} \end{aligned}} \right) = {E_n}\left( {\begin{aligned} {{u_n}}\\ {{\nu _n}} \end{aligned}} \right), $(4)

    View in Article

    $\begin{aligned} & \hat{h}_{ij} = -t\left( \delta_{j, i+1}+\delta_{j, i-1}\right) +V_{i}\delta_{ji},\\ & \hat{\varDelta}_{ij} = -\varDelta\left( \delta_{j, i+1}-\delta_{j, i-1}\right), \\ & u_{n}^{\rm T} = \left( u_{n, 1}, ..., u_{n, L}\right) ,\\ & \nu_{n}^{\rm T} = \left( \nu_{n, 1}, ..., \nu_{n, L}\right). \end{aligned}$()

    View in Article

    $\begin{split} \hat{H}_{k}= \;&\sum\limits_{k}\bigg[ \sum\limits_{s = 1}^{q-1}\left( -t\hat{c}_{s,k}^{\dagger } \hat{c}_{s+1,k}+\varDelta \hat{c}_{s,k}\hat{c}_{s+1,-k}\right)\bigg. \\ & \bigg.-t\hat{c} _{q,k}^{\dagger }\hat{c}_{1,k}{\rm e}^{{\rm i}kq}+\varDelta \hat{c}_{q,k}\hat{c} _{1,-k}{\rm e}^{-{\rm i}kq}+{\rm {h.c.}}\bigg] \\ & -\sum\limits_{k}\sum\limits_{s = 1}^{q}V_{s}\left( \hat{c}_{s,k}^{\dagger }\hat{c}_{s,k}- \frac{1}{2}\right). \end{split} $(5)

    View in Article

    $ \hat{H}_k = \frac{i}{4}\sum\limits_{k}\sum\limits_{m,n}B_{m,n}\left( k\right) \hat\gamma_{m}\left( -k\right) \hat\gamma_{n}\left( k\right). $(6)

    View in Article

    $ B_{2 s-1, 2 s}\left( k\right) = -B_{2 s, 2 s-1}\left( k\right) = -V_{s};$()

    View in Article

    $\begin{aligned} & B_{2 s-1, 2 s+2}\left( k\right) = -B_{2 s+2, 2 s-1} = \varDelta-t,\\ & B_{2 s, 2 s+1}\left( k\right) = -B_{2 s+1, 2 s}\left( k\right) = \varDelta+t,\end{aligned}$()

    View in Article

    $\begin{aligned}& B_{2 s-1, 2 s}\left( k\right) = -B_{2 s, 2 s-1}\left( k\right) = -V_{s},\\ & B_{2, 2 q-1}\left( k\right) = -B_{2 q-1, 2}^{\ast}\left( k\right) = -\left( \varDelta-t\right) {\rm e}^{-{\rm i}kq}.\end{aligned}$()

    View in Article

    $\begin{aligned}& {\rm {Pf}}\left[ { B}\left( 0\right) \right] = \frac{-V^{2}\cos ^{2}\delta }{1-b^{2}\cos^{2}\delta }-4 t^{2},\\ & {\rm {Pf}}\left[ { B}\left( \frac{{\text{π}} }{2}\right) \right] = \frac{-V^{2}\cos ^{2}\delta}{1-b^{2}\cos ^{2}\delta }+4\varDelta ^{2} .\end{aligned}$()

    View in Article

    $ \varDelta = \frac{V|\cos{\delta}|}{2\sqrt{1-b^{2}\cos^{2}\delta}}. $(7)

    View in Article

    $ \cos \left( 3\delta \right) = \frac{-2t^{2}\left[ \left( -4+3b^{2}\right) t+3b\left\vert V\right\vert \right] +6\varDelta ^{2}\left[ \left( 4-3b^{2}\right) t+b\left\vert V\right\vert \right] }{\left( 2bt-\left\vert V\right\vert \right) \big( b^{2}\left( 3\varDelta ^{2}+t^{2}\right) +2b\left\vert V\right\vert t+\left\vert V\right\vert ^{2}\big) }, $(8)

    View in Article

    $ {{S}} = \left( \begin{array}{cc} {R} & {T}^{\prime } \\ {T} & {R}^{\prime } \end{array} \right), $(9)

    View in Article

    $ \left( \begin{array}{c} \hat{t}_{i}{ {\varPhi}} _{i} \\ { {\varPhi}} _{i+1} \end{array} \right) = \tilde{ W}_{i}\left( \begin{array}{c} \hat{t}_{i-1}^{\dagger }{ {\varPhi}} _{i-1} \\ { {\varPhi}} _{i} \end{array} \right), $(10)

    View in Article

    $ \tilde{{ {W}}}_{i} = \left( \begin{array}{cc} 0 & \hat{t}_{i}^{\dagger } \\ -\hat{t}_{i}^{-1} & -\hat{t}_{i}^{-1}\hat{\lambda}_{i} \end{array} \right), $(11)

    View in Article

    $ { W} = { U}^{\dagger }\tilde{ W}{ U},\quad { U} = \sqrt{\frac{1}{2}}\left( \begin{array}{cc} { I} & { I} \\ {\rm i}{ I} & -{\rm i}{ I} \end{array} \right), $(12)

    View in Article

    $ \left( \begin{aligned} { T} \\ 0 \end{aligned} \right) = { W}\left( \begin{aligned} { I} \\ { R} \end{aligned} \right),\left( \begin{aligned} { R}^{\prime } \\ { I}\; \end{aligned} \right) = { W}\left( \begin{aligned} 0\;\\ { T}^{\prime } \end{aligned} \right). $(13)

    View in Article

    Jing-Nan Wu, Zhi-Hao Xu, Zhan-Peng Lu, Yun-Bo Zhang. Topological quantum phase transitions in one-dimensional p-wave superconductors with modulated chemical potentials[J]. Acta Physica Sinica, 2020, 69(7): 070302-1
    Download Citation