[1] Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: Recent trends and future challenges[J]. IEEE Commun. Mag., 2013, 51(9): 39-45.
[2] Li Yu, Zhang Yu, Zhang Lei, et al. Silicon and hybrid silicon photonic devices for intra-data center applications: state of the art and perspectives [Invited][J]. Photonics. Res., 2015, 3(5): B10-B27.
[3] Kachris C, Tomkos I. A survey on optical interconnects for data centers[J]. IEEE Commun. Surv. Tutor., 2012, 14(4): 1021-1036.
[5] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. J. Lightwave Technol., 2010, 28(4): 662-701.
[6] Nivaashini M, Thangaraj P. Computational intelligence techniques for automatic detection of Wi-Fi attacks in wireless IoT networks[J]. Wireless Networks, 2021, 27(4): 2761-2784.
[7] Miller S E. A survey of integrated optics[J]. IEEE J. Quantum Electron., 2003, 8(2): 199-205.
[8] Helkey R, Adams S, Bowers J, et al. Design of large, MEMS-based photonic switches[J]. Opt. Photon. News, 2002, 13(5): 40-43.
[9] Chu P B, Lee S S, Park S. MEMS: The path to large optical crossconnects[J]. IEEE Commun. Mag., 2002, 40(3): 80-87.
[10] Presby H, Narayanan C. Mechanical silica optical circuit switch[J]. Electron. Lett., 1998, 34(5): 484-485.
[11] Stabile R. Integrated InP optical switch matrices performance for packet data networks[C]// Optoelectronics & Communications Conf. IEEE, 2016: 1-3.
[12] Soganci I M, Tanemura T, Williams K A, et al. Monolithically integrated InP 1×16 optical switch with wavelength-insensitive operation[J]. IEEE Photon. Technol. Lett., 2010, 22(3): 143-145.
[13] Agashe S S, Shiu K T, Forrest S R. Compact polarization-insensitive InGaAsP-InP 2×2 optical switch[J]. IEEE Photon. Technol. Lett., 2005, 17(1): 52-54.
[14] Goh T, Yasu M, Hattori K, et al. Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology[J]. J. Lightwave Technol., 2001, 19(3): 371.
[15] Nagase R, Himeno A, Okuno M, et al. Silica-based 8×8 optical matrix switch module with hybrid integrated driving circuits and its system application[J]. J. Lightwave Technol., 1994, 12(9): 1631-1639.
[16] Honjo T, Inoue K, Sahara A, et al. Quantum key distribution experiment through a PLC matrix switch[J]. Opt. Commun., 2006, 263(1): 120-123.
[17] Shibata T, Okuno M, Goh T, et al. Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits[J]. IEEE Photon. Technol. Lett., 2003, 15(9): 1300-1302.
[18] Yoo S J B. Future prospects of silicon photonics in next generation communication and computing systems[J]. Electron. Lett., 2009, 45(12): 584-587.
[19] Heideman R G, Kooyman R, Greve J. Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor[J]. Biosens. Bioelectron., 2009, 45(12): 584-588.
[20] Yang M, Green W, Assefa S, et al. Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks[J]. Opt. Express, 2011, 19(1): 47-54.
[21] Nicolas, Dupuis, Benjamin, et al. Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach-Zehnder silicon photonic switches[J]. J. Lightwave Technol., 2015, 33(17): 3597-3606.
[22] Joris V C, William M J, Green S A, et al. Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks[J]. Opt. Express, 2009, 17(26): 24020.
[23] Dong P, Liao S, Hong L, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches[J]. Opt. Express, 2010, 18(24): 25225-25231.
[24] Wang Hangli, Li Xuepeng, Zhang Mengruo, et al. Broadband 2×2 lithium niobate electro-optic switch based on a Mach-Zehnder interferometer with counter-tapered directional couplers[J]. Appl. Opt., 2017, 56(29): 8164.
[25] Harjanne M, Kapulainen M, Aalto T, et al. Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch[J]. IEEE Photon. Technol. Lett., 2004, 16(9): 2039-2041.
[26] Peng S, Reano R M. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides[J]. Opt. Express, 2010, 18(8): 8406.
[27] Rizal C S, Niraula B. Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch[J]. Opt. Commun., 2018, 410: 947-1015.
[28] Chen Kai, Duan Fei, Yu Yonglin. Performance-enhanced silicon thermo-optic Mach-Zehnder switch using laterally supported suspended phase arms and efficient electrodes[J]. Opt. Lett., 2019, 44(4): 951-954.
[29] Zhang Ruihuan, He Yu, Zhang Yong. Ultracompact and low-power-consumption silicon thermo-optic switch for high-speed data[J]. Nanophotonics, 2021, 10(2): 937-945.
[30] Faneca J, Bucio T D, Gardes F Y, et al. O-band N-rich silicon nitride MZI based on GST[J]. Appl. Phys. Lett., 2020, 116(9): 093502.
[31] Duan Fei, Chen Kai, Chen Da, et al. Low-power and high-speed 2×2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure[J]. Opt. Lett., 2020, 46(2): 234-237.
[32] Manipatruni S, Dokania R K, Schmidt B, et al. Wide temperature range operation of micrometer-scale silicon electro-optic modulators[J]. Opt. Lett., 2008, 33(19): 2185-2187.
[33] Lu Liangjun, Zhou Linjie, Li Xinwan, et al. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers[J]. Opt. Lett., 2014, 36(6): 1633-1636.
[34] Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(7040): 325.
[35] Vlasov Y, Green W, Xia F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks[J]. Nature Photonics, 2008, 2(4): 1-3.
[36] Biberman A, Lira H L R, Padmaraju K, et al. Broadband silicon photonic electrooptic switch for photonic interconnection networks[J]. IEEE Photon. Technol. Lett., 2011, 23(8): 504-506.
[37] Poon A W, Luo X S, Xu F. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection[J]. Proc. IEEE, 2009, 90(7): 1216-1238.
[38] Luo Xianshu, Song Junfeng, Feng Shaoqi, et al. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects[J]. IEEE Photon. Technol. Lett., 2012, 24(10): 821-823.
[39] Dasmahapatra P, Stabile R, Rohit A, et al. Optical crosspoint matrix using broadband resonant switches[J]. IEEE J. Sel. Top. Quantum. Electron., 2014, 20(4): 1-10.
[40] Lira H L, Manipatruni S, Lipson M. Broadband hitless silicon electro-optic switch for on-chip optical networks[J]. Opt. Express, 2009, 17(25): 22271.
[41] Lee B G, Green W, Campenhout J V, et al. Comparison of ring resonator and Mach-Zehnder photonic switches integrated with digital CMOS drivers[C]// 23rd Annual Meeting of the IEEE Photonics-Society, Denver, CO, 2010: 327-328.
[42] Luo Xianshu, Song Junfeng, Feng Shaoqi, et al. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects[J]. IEEE Photon. Technol. Lett., 2012, 24(10): 821-823.