[1] M H Key. Status of and prospects for the fast ignition inertial fusion concept[J]. Phys Plasmas, 2007, 14(5): 055502.
[2] W Theobald, A A Solodov, C Stoeckl, et al.. Initial cone-in-shell fast-ignition experiments on OMEGA[J]. Phys Plasmas, 2011, 18(5): 056305.
[3] J D Zuegel, S Borneis, C Barty, et al.. Laser challenges for fast ignition[J]. Fusion Science and Technology, 2006, 49: 453-482.
[4] W F Krupke. Solid state lasers for application to inertial confinement fusion[C]. SPIE, 1995, 2633: 2-12.
[5] Lin Zunqi. Progress of laser fusion[J]. Chinese J Laser, 2010, 37(9): 2202-2207.
[6] G H Miller, E I Mosers, C R Wuest. The national ignition facility[J]. Opt Eng, 2004, 43(12): 2841-2853.
[7] X T He, W Y Zhang. Inertial fusion research in china[J]. Eur Phys J D, 2007, 44(2): 227-231.
[8] Zhang Panzheng, Lin Xianping, Pan Feng, et al.. Research of grounding of high power Nd:glass disk amplifier of SG II[J]. Chinese J Lasers, 2014, 41(3): 0302004.
[9] P Wegner, J Auerbach, T Biesiada, et al.. NIF final optics system: frequency conversion and beam conditioning[C]. SPIE, 2004, 5341: 180-189.
[10] Li Fuquan, Han Wei, Wang Fang, et al.. Reasearch status of final optics assembly in high-power laser facility[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060002.
[11] Zhao Dongfeng, Wang Li, Lin Zunqi, et al.. Experimental study of 351 nm propagation with high fluence on No.9 system of SG-II laser facility[J]. Chinese J Lasers, 2011, 38(7): 0702001.