• Optoelectronics Letters
  • Vol. 18, Issue 1, 35 (2022)
Hongwei LI, Chuncan WANG*, and Haitao AN
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.1007/s11801-022-1031-z Cite this Article
    LI Hongwei, WANG Chuncan, AN Haitao. Numerical simulation of the heavily Ge-doped polarization-maintaining fiber with normal dispersion[J]. Optoelectronics Letters, 2022, 18(1): 35 Copy Citation Text show less
    References

    [1] WANG C C, KIM J, JIN C, et al. Review:near infrared spectroscopy in optical coherence tomography[J].Journal of near infrared spectroscopy, 2012, 20(1):237.

    [2] LABRUYèRE A, TONELLO A, COUDERC V, et al. Compact supercontinuum sources and their biomedical applications[J]. Optical fiber technology, 2012, 18(5): 375-378.

    [3] TU H, BOPPART S A. Coherent fiber supercontinuum for biophotonics[J]. Laser & photonics reviews, 2013, 7(5):628-645.

    [4] LEVICK A P, GREENWELL C L, IRELAND J, et al. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter:the spectrally tunable absolute irradiance and radiance source[J]. Applied optics, 2014, 53(16):3508-3519.

    [5] HUANG C L, LIAO M S, BI W J, et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion[J]. Photonics research, 2018, 6(6):601-608.

    [6] LIU W, WU Y, QI L. The influences of dispersions on supercontinuum in photonic crystal fiber[J]. Journal of physics:conference series, 2021, 1846(1):012071.

    [7] CHESHMBERAH A, SEIFOURI M, OLYAEE S. Supercontinuum generation in PCF with As2S3/Ge20Sb15Se65 chalcogenide core pumped at third telecommunication wavelengths for WDM[J]. Optical and quantum electronics, 2020, 52(12):509.

    [8] MARIUSZ K, DAMIAN M, GRZEGORZ S, et al. Coherent supercontinuum generation in tellurite glass regular lattice photonic crystal fibers[J]. Journal of the optical society of America B, 2019, 36(2):A112.

    [9] HOANG V T, KASZTELANIC R, FILIPKOWSKI A, et al. Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride[J]. Optical materials express, 2019, 9(5):2264.

    [10] WANG C C, WANG M H, WU J. Heavily germaniumdoped silica fiber with a flat normal dispersion profile[J]. IEEE photonics journal, 2015, 7(2):1-10.

    [11] LIU Y, ZHAO Y, LYNGSO J, et al. Suppressing shortterm polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation[J]. Journal of lightwave technology, 2015, 33(9):1814-1820.

    [12] TARNOWSKI K, MARTYNKIEN T, MERGO P, et al. Polarized all-normal dispersion supercontinuum reaching 2.5 μm generated in a birefringent microstructured silica fiber[J]. Optics express, 2017, 25(22):27452-27463.

    [13] GENIER E, GHOSH A N, BOBBA S, et al. Cross-phase modulation instability in PM ANDi fiber-based supercontinuum generation[C]//Conference on Lasers and Electro-Optics Europe :QELS_Fundamental Science, May 10-15, 2020, Washington, DC, United States. New York:IEEE, 2020:88-125.

    [14] DOBRAKOWSKI D, RAMPUR A, STEPNIEWSKI G, et al. Development of highly nonlinear polarization maintaining fibers with normal dispersion across entire transmission window[J]. Journal of optics, 2018, 21(1):015504.

    [15] GHOSH A N, MENEGHETTI M, PETERSEN C R, et al. Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany. New York:IEEE, 2019.

    [16] COUTURE N, OSTIC R, REDDY P H, et al. Polarization- resolved supercontinuum generated in a germaniadoped photonic crystal fiber[J]. Journal of physics: photonics, 2021, 3(2):25002.

    [17] WANG C C, LI H W, QIAO Y J, et al. Normaldispersion CS2-filled silica fiber with broadband singlepolarization property[J]. Optical fiber technology, 2021, 66:102665.

    [18] FLEMING J W. Dispersion in GeO2-SiO2 glasses[J]. Applied optics, 1984, 23(4):4486-4493.

    [19] YURI Y, ALEXEI M. D-scan measurement of nonlinear refractive index in fibers heavily doped with GeO2[J]. Optics letters, 2007, 32(22):3257-3259.

    [20] LAGSGAARD J, TU H H. How long wavelengths can one extract from silica-core fibers?[J]. Optics letters, 2013, 38(21):4518-4521.

    [21] AGRAWAL G P. Nonlinear fiber optics[M]. 4th ed. New York:Academic Press, 2007.

    [22] ROTTWITT K, POVLSEN J H. Analyzing the fundamental properties of Raman amplification in optical fibers[J]. Journal of lightwave technology, 2005, 23(11):3597-3605.

    [23] RIEZNIK A A, HEIDT A M, KONIG P G, et al. Optimum integration procedures for supercontinuum simulation[J]. IEEE photonics journal, 2012, 4(2):552-560.

    [24] IMESHEV G, FERMANN M E. 230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber[J]. Optics express, 2005, 13(19):7424-7431.

    [25] DUDLEY J M, GENTY G, COEN S. Supercontinuum generation is photonic crystal fiber[J]. Review of modern physics, 2006, 78:1135-1184.

    LI Hongwei, WANG Chuncan, AN Haitao. Numerical simulation of the heavily Ge-doped polarization-maintaining fiber with normal dispersion[J]. Optoelectronics Letters, 2022, 18(1): 35
    Download Citation