• Chinese Journal of Lasers
  • Vol. 46, Issue 5, 0508015 (2019)
Wenlong Tian1,2, Jiangfeng Zhu1,*, Zhaohua Wang2, and Zhiyi Wei2,**
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,Beijing 100190, China
  • show less
    DOI: 10.3788/CJL201946.0508015 Cite this Article Set citation alerts
    Wenlong Tian, Jiangfeng Zhu, Zhaohua Wang, Zhiyi Wei. Optical Parametric Oscillators Synchronously Pumped by All-Solid-State Femtosecond Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508015 Copy Citation Text show less
    References

    [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985). http://www.sciencedirect.com/science/article/pii/0030401885901518

    [2] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118(1961).

    [3] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 14, 973(1965). http://prola.aps.org/abstract/PRL/v14/i24/p973_1

    [4] Edelstein D C, Wachman E S, Tang C L. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Applied Physics Letters, 54, 1728-1730(1989). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4858688

    [5] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 16, 42-44(1991). http://ptep.oxfordjournals.org/external-ref?access_num=10.1364/OL.16.000042&link_type=DOI

    [6] Gale G M, Cavallari M, Driscoll T J et al. Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator[J]. Optics Letters, 20, 1562-1564(1995). http://www.ncbi.nlm.nih.gov/pubmed/19862083

    [7] Loza-Alvarez P. Brown C T A, Reid D T, et al. High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 28 to 68 μm[J]. Optics Letters, 24, 1523-1525(1999).

    [8] Ghotbi M, Esteban-Martin A, Ebrahim-Zadeh M. Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet[J]. Optics Letters, 33, 345-347(2008). http://www.ncbi.nlm.nih.gov/pubmed/18278105

    [9] Ramaiah-Badarla V, Esteban-Martin A, Kumar S C et al. Mid-Infrared femtosecond optical parametric oscillator synchronously-pumped directly by a Ti∶sapphire laser[C]. CLEO, SW4O, 3(2015).

    [10] O'Donnell C F. Kumar S C, Zawilski K T, et al. Critically phase-matched Ti∶sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2[J]. Optics Letters, 43, 1507-1510(2018).

    [11] Zhu J F, Zhong X, Teng H et al. Synchronously pumped femtosecond optical parametric oscillator based on MgO-doped periodically poled LiNbO3[J]. Chinese Physics Letters, 24, 2603-2605(2007). http://www.cqvip.com/QK/84212X/20079/25742838.html

    [12] Zhong X, Zhu J F, Zhou B B et al. Synchronously pumped femtosecond optical parametric oscillator at 1053 nm[J]. Science in China Series G: Physics, Mechanics and Astronomy, 52, 1187-1190(2009). http://link.springer.com/article/10.1007/s11433-009-0160-8

    [13] Xu L, Zhong X, Zhu J F et al. Efficient femtosecond optical parametric oscillator with dual-wavelength operation[J]. Optics Letters, 37, 1436-1438(2012). http://www.ncbi.nlm.nih.gov/pubmed/22555696

    [14] Zhang Z W, Sun J H, Gardiner T et al. Broadband conversion in an Yb∶KYW-pumped ultrafast optical parametric oscillator with a long nonlinear crystal[J]. Optics Express, 19, 17127-17132(2011). http://www.ncbi.nlm.nih.gov/pubmed/21935074

    [15] Gu C L, Hu M L, Zhang L M et al. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator[J]. Optics Letters, 38, 1820-1822(2013). http://europepmc.org/abstract/med/23722755

    [16] Metzger B, Pollard B, Rimke I et al. Single-step sub-200 fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser[J]. Optics Letters, 41, 4383-4386(2016). http://www.ncbi.nlm.nih.gov/pubmed/27628403

    [17] Smolski V, Vasilyev S, Moskalev I et al. Half-Watt average power femtosecond source spanning 3-8 μm based on subharmonic generation in GaAs[J]. Applied Physics B, 124, 101(2018). http://link.springer.com/10.1007/s00340-018-6963-4

    [18] Gao Z Y, Zhu J F, Wang K et al. Diode-pumped Kerr-lens mode-locked femtosecond Yb∶YAG ceramic laser[J]. Chinese Physics B, 25, 024205(2016). http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201602027.htm

    [19] Yu Z J, Han H N, Xie Y et al. CEO stabilized frequency comb from a 1-μm Kerr-lens mode-locked bulk Yb∶CYA laser[J]. Optics Express, 24, 3103-3111(2016). http://www.opticsinfobase.org/abstract.cfm?uri=oe-24-3-3103

    [20] Tian W L, Wang Z H, Wei Z Y et al. Diode-pumped Kerr-lens mode-locked Yb∶GSO laser generating 72 fs pulses. [C]∥2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 24-28 Aug. 2015, Busan, South Korea, 1-2(2015).

    [21] Zhu J F, Gao Z Y, Tian W L et al. Kerr-lens mode-locked femtosecond Yb∶GdYSiO5 laser directly pumped by a laser diode[J]. Applied Sciences, 5, 817-824(2015).

    [22] Tian W L, Wang Z H, Zhu J F et al. Generation of 54 fs laser pulses from a diode pumped Kerr-lens mode-locked Yb∶LSO laser[J]. Chinese Physics Letters, 32, 024206(2015). http://www.cnki.com.cn/Article/CJFDTotal-WLKB201502020.htm

    [23] Gao Z Y, Zhu J F, Zhang L J et al. Generation of 85 fs laser pulses from a diode-pumped Kerr-lens mode-locking Yb:(Y0.9La0.1)2O3ceramic laser[J]. Laser Physics Letters, 11, 115302(2014). http://adsabs.harvard.edu/abs/2014LaPhL..11k5302G

    [24] Gao Z Y, Zhu J F, Tian W L et al. Generation of 73 fs pulses from a diode pumped Kerr-lens mode-locked Yb∶YCa4O(BO3)3 laser[J]. Optics Letters, 39, 5870-5872(2014). http://www.ncbi.nlm.nih.gov/pubmed/25361106

    [25] Zhang J W, Han H N, Tian W L et al. Diode-pumped 88-fs Kerr-lens mode-locked Yb∶Y3Ga5O12 crystal laser[J]. Optics Express, 21, 29867-29873(2013).

    [26] Zhou B B, Wei Z Y, Zou Y W et al. High-efficiency diode-pumped femtosecond Yb∶YAG ceramic laser[J]. Optics Letters, 35, 288-290(2010). http://europepmc.org/abstract/med/20125697

    [27] Tian W L, Peng Y N, Zhang Z Y et al. Diode-pumped power scalable Kerr-lens mode-locked Yb∶CYA laser[J]. Photonics Research, 6, 127-131(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180202000012HdJgMi

    [28] Tian W L, Wang Z H, Zhu J F et al. Highly efficient and high-power diode-pumped femtosecond Yb∶LYSO laser[J]. Laser Physics Letters, 14, 045802(2017). http://adsabs.harvard.edu/abs/2017LaPhL..14d5802T

    [29] Tian W L, Wang Z H, Zhu J F et al. Tunable femtosecond near-infrared source based on a Yb∶LYSO-laser-pumped optical parametric oscillator[J]. Chinese Physics B, 25, 014207(2016). http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201601074.htm

    [30] Tian W L, Zhu J F, Wang Z H et al. Efficient femtosecond optical parametric oscillator pumped by all solid-state mode-locking Yb∶YCOB laser[J]. Chinese Optics Letters, 13, 011901(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150104000060MjPlSo

    [31] Meng X H, Wang Z H, Tian W L et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 103 μm Yb∶KGW laser[J]. Optics Letters, 43, 943-946(2018).

    [32] Meng X H, Wang Z H, Tian W L et al. Tunable, high-repetition-rate, dual-signal-wavelength femto-second optical parametric oscillator based on BiB3O6[J]. Applied Physics B, 124, 9(2018).

    [33] Tian W, Wang Z, Meng X et al. High-power, widely tunable, green-pumped femtosecond BiB3O6 optical parametric oscillator[J]. Optics Letters, 41, 4851-4854(2016). http://www.ncbi.nlm.nih.gov/pubmed/27805633

    [34] Tian W L, Wang Z H, Zhu J F et al. Harmonically pumped femtosecond optical parametric oscillator with multi-gigahertz repetition rate[J]. Optics Express, 24, 29814-29821(2016). http://europepmc.org/abstract/MED/28059367

    [35] Tian W, Meng X, Wang Z et al. Sub-gigahertz femtosecond BIBO-OPO harmonically pumped by green laser[C]. International Symposium on Ultrafast Phenomena and Terahertz Waves, IT4C, 5(2016).

    [36] Ashihara S, Shimura T, Kuroda K et al. Group-velocity-matched cascaded quadratic nonlinearities of femtosecond pulses in periodically poled MgO∶LiNbO3[J]. Optics Letters, 28, 1442-1444(2003). http://www.ncbi.nlm.nih.gov/pubmed/12943085

    [37] Ruffing B, Nebel A, Wallenstein R. All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator[J]. Applied Physics B: Lasers and Optics, 67, 537-544(1998). http://link.springer.com/article/10.1007/s003400050541

    [38] Kienle F, Lin D J, Alam S U et al. Green-pumped, picosecond MgO∶PPLN optical parametric oscillator[J]. Journal of the Optical Society of America B, 29, 144-152(2012). http://www.opticsinfobase.org/abstract.cfm?URI=josab-29-1-144

    [39] Jurna M, Korterik J P, Offerhaus H L et al. Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy[J]. Applied Physics Letters, 89, 251116(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4823920

    [40] Kienle F, Teh P S, Lin D J et al. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator[J]. Optics Express, 20, 7008-7014(2012). http://europepmc.org/abstract/MED/22453380

    [41] Ganikhanov F, Carrasco S, Xie X S et al. Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 31, 1292-1294(2006). http://europepmc.org/abstract/MED/16642089

    [42] Kieu K, Saar B G, Holtom G R et al. High-power picosecond fiber source for coherent Raman microscopy[J]. Optics Letters, 34, 2051-2053(2009). http://www.opticsinfobase.org/abstract.cfm?uri=ol-34-13-2051

    [43] Kumar S C, Ebrahim-Zadeh M. Fiber-laser-based green-pumped picosecond MgO∶sPPLT optical parametric oscillator[J]. Optics Letters, 38, 5349-5352(2013). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=199903

    [44] Cleff C, Epping J, Gross P et al. Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy[J]. Applied Physics B, 103, 795-800(2011). http://link.springer.com/article/10.1007/s00340-011-4465-8

    [45] Lang T, Binhammer T, Rausch S et al. High power ultra-widely tuneable femtosecond pulses from a non-collinear optical parametric oscillator (NOPO)[J]. Optics Express, 20, 912-917(2012). http://europepmc.org/abstract/MED/22274438

    [46] Gu C L, Hu M L, Fan J T et al. High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser[J]. Optics Letters, 39, 3896-3899(2014). http://www.opticsinfobase.org/abstract.cfm?uri=ol-39-13-3896

    [47] Petrov V, Ghotbi M, Kokabee O et al. Femtosecond nonlinear frequency conversion based on BiB3O6[J]. Laser & Photonics Reviews, 4, 53-98(2010). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200810075/full

    [48] Ebrahim-Zadeh M, Chaitanya Kumar S. Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 624-642(2014). http://ieeexplore.ieee.org/document/6808408/

    [49] Ebrahim-Zadeh M, Kumar S C, Devi K. Yb-fiber-laser-pumped continuous-wave frequency conversion sources from the mid-infrared to the ultraviolet[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 350-372(2014). http://ieeexplore.ieee.org/document/6808408/

    [50] Kokabee O, Esteban-Martin A, Ebrahim-Zadeh M. Extended-cavity, tunable, GHz-repetition-rate femtosecond optical parametric oscillator pumped at 76 MHz[J]. Optics Express, 17, 15635-15640(2009). http://europepmc.org/abstract/MED/19724562

    [51] Jiang J, Hasama T. Synchronously pumped femtosecond optical parametric oscillator based on an improved pumping concept[J]. Optics Communications, 220, 193-202(2003). http://www.sciencedirect.com/science/article/pii/S0030401803013427

    [52] Brons J, Pervak V, Fedulova E et al. Energy scaling of Kerr-lens mode-locked thin-disk oscillators[J]. Optics Letters, 39, 6442-6445(2014). http://www.ncbi.nlm.nih.gov/pubmed/25490489

    [53] Südmeyer T, Innerhofer E, Brunner F et al. High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3[J]. Optics Letters, 29, 1111-1113(2004). http://europepmc.org/abstract/MED/15182002

    [54] Lamour T P, Reid D T. 650-nJ pulses from a cavity-dumped Yb∶fiber-pumped ultrafast optical parametric oscillator[J]. Optics Express, 19, 17557-17562(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-18-17557

    [55] He L J, Liu K, Bo Y et al. 305-μJ, 10-kHz, picosecond optical parametric oscillator pumped synchronously and intracavity by a regenerative amplifier[J]. Optics Letters, 43, 539-542(2018). http://www.ncbi.nlm.nih.gov/pubmed/29400835

    [56] Ghotbi M, Esteban-Martin A, Ebrahim-Zadeh M. BiB3O6 femtosecond optical parametric oscillator[J]. Optics Letters, 31, 3128-3130(2006).

    [57] Fan J T, Gu C L, Wang C et al. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator[J]. Optics Express, 24, 13250-13257(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410342

    [58] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 41, 4261-4264(2016). http://www.ncbi.nlm.nih.gov/pubmed/27628372

    [59] Peng Y N, Zhang J W, Wang Z H et al. Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb∶YAG thin-disk oscillator[J]. Chinese Physics B, 25, 094207(2016). http://www.cqvip.com/QK/85823A/201609/669929190.html

    Wenlong Tian, Jiangfeng Zhu, Zhaohua Wang, Zhiyi Wei. Optical Parametric Oscillators Synchronously Pumped by All-Solid-State Femtosecond Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508015
    Download Citation