• Acta Physica Sinica
  • Vol. 68, Issue 9, 092101-1 (2019)
Xiao-Wei Wang and Jian-You Guo*
DOI: 10.7498/aps.68.20182197 Cite this Article
Xiao-Wei Wang, Jian-You Guo. Investigation of n-α scattering by combining complex momentum representation and Green’s function [J]. Acta Physica Sinica, 2019, 68(9): 092101-1 Copy Citation Text show less

Abstract

Nuclear scattering is a very important physical phenomenon in which the resonance state plays an important role. In order to study the two-body system n-α scattering, Green’s function is introduced under the complex momentum representation, so the complex momentum representation-Green’s function approach is established. This method is used to study the elastic scattering of n-α system. By extracting the resonances, it is found that the contributions of resonances in continuum level density, phase shift, and cross section are more important. In the case without introducing any non-physical parameters, it is very helpful to understand the resonant states and the non-resonance continuum states by analyzing the data of scattering states. In this work, we mainly study the p-wave scattering with the orbital angular momentum l = 1, where P1/2 is a wide resonance state and P3/2 is narrow resonance state. The study shows that the sharp resonance peak of p-wave scattering gives rather broad distribution to the scattering phase shift and the cross section of the n-α system. By comparison, we can see that the theoretical calculation results and experimental data are in good consistence.
$ H = T+V , $(1)

View in Article

$\begin{split} {V_{{\text{α}} {\rm{ \text{-} n}}}}\left( r \right) = & \sum\limits_{i = 1}^2 {V_i^{\rm{c}}} \exp \left( { - {\mu} _i^{\rm{c}}{r^2}} \right)\\ & + {\left( { - 1} \right)^l}\sum\limits_{i = 1}^3 {V_{li}^{\rm{c}}} \exp \left( { - {\mu} _{li}^{\rm{c}}{r^2}} \right)\\ &+ \left( {{{l}} \cdot {{s}}} \right)\left[ {{V^{\rm{ls}}}\exp \left( { - {{\mu} ^{\rm{ls}}}{r^2}} \right) + 1} \right.\\ &\left. { + 0.3{{\left( { - 1} \right)}^{l - 1}}\sum\limits_{i = 1}^2 {V_{li}^{\rm{ls}}} \exp \left( { - {\mu} _{li}^{\rm{ls}}{r^2}} \right)} \right] \end{split}. $(2)

View in Article

$ \int {{k}}'\left\langle { {{k}}\left|{H} \right|{{k}}'} \right\rangle\varPsi\left( {{{k}}'} \right) = E\varPsi\left( {{{k}}} \right). $(3)

View in Article

$ \frac{-5\hbar^{2}}{8M}\nabla^{2}\varPsi\left( {{{k}}} \right)+\int {{k}}'\left\langle {{{k}}\left| { V_{\rm {\rm{\alpha}\text{-}n}}\left( {r} \right)} \right|{{k}}'} \right\rangle\varPsi\left( {{{k}}'} \right) = E\varPsi\left( {{{k}}'} \right), $(4)

View in Article

$\begin{split} \left\langle {{{{k}}}\left| {V\left({{r}} \right)} \right|{{k'}}} \right\rangle = &\; \frac{1}{{{{\left({2{\text{π}} } \right)}^3}}}\int {{\rm{d}}{{r}}V\left({{r}} \right)\exp } \left({ - {\rm{i}}{{{k}}} \cdot {{r + }}{\rm{i}}{{k'}} \cdot {{r}}} \right)\\ = & \sum\limits_{l''m''} {\frac{2}{{\text{π}} }\int {{r^2}{\rm{d}}r{{\rm{j}}_{l''}}\left({kr} \right)} } {{\rm{j}}_{l''}}\left({k'r} \right)V\left(r \right)\\ & \times Y_{l''m''}^ * \left({{\varOmega _{k'}}} \right){Y_{l''m''}}\left({{\varOmega _k}} \right), \end{split} $(5)

View in Article

$ \begin{split}& \int {\rm{d}} {k'}\left\langle {{k}\left| {V\left( {r} \right)} \right|{k'}} \right\rangle \varPsi \left( {{k'}} \right)\\ = & \; \int {{{k'}^2}} {\rm{d}}k'\frac{2}{{\text{π}} }\int {{r^2}} {\rm{d}}rV\left( r \right){{\rm{j}}_l}\left( {kr} \right){{\rm{j}}_l}\left( {k'r} \right)\\ & \;\times{Y_{lm}}\left( {{\varOmega _k}} \right){f^l}\left( {k'} \right). \end{split} $(6)

View in Article

$ \Delta\left( {E} \right) = -\frac{1}{\text{π}}{\rm Im}{{\rm Tr}\left[ {G^{+}\left( {E} \right)-G_{0}^{+}\left( {E} \right)} \right]}, $(7)

View in Article

$\begin{split} \rho (E) = & - \frac{1}{\text{π}}{\mathop{\rm Im}\nolimits} \int {{\rm{d}}k} \left[ {\sum\limits_b^{{N_{_{\rm{b}}}}} {\frac{{{{\varPsi}_{_{{b}}}}( k)\tilde {\varPsi} _{_{{b}}}^*( k)}}{{E - {E_{{b}}}}}} } \right.\\ &+\sum_{r}^{N_{\rm{r}}}\frac{\varPsi_{{r}}\left( {{ k}} \right)\tilde{\varPsi}_{{ r}}^{*}\left( {{ k}} \right)}{E-E_{r}}\\ & +\left.\int {\rm{d}}E_{{c}}\frac{\varPsi_{ c}\left( {{ k}} \right)\tilde{\varPsi}_{_{ c}}^{*}\left( {{{k}}} \right)}{E-E_{{c}}}\right], \end{split}$(8)

View in Article

$\begin{split}\delta\left( {E} \right) &= \int _{-\infty}^{E}\rho\left( {E} \right){\rm{d}}E = \int_{-\infty}^{E}\left[\sum_{b = 1}^{{N_{\rm b}}}{\text{π}}\delta\left( {E-E_{{b}}} \right)\right. \\ & \quad+ \sum_{r = 1}^{{N_{\rm r}}}\frac{E_{{r}}^{{i}}}{\left( {E-E_{{r}}^{\rm{r}}} \right)^{2}+\left( {E_{{r}}^{{i}}} \right)^{2}} \\ & \quad+ \sum_{c = 1}^{N_{{\rm c}}}\frac{E_{{c}}^{{i}}}{\left( {E-E_{{c}}^{\rm{r}}} \right)^{2}+\left( {E_{{c}}^{{i}}} \right)^{2}} \\ &\quad\left. -\sum_{k = 1}^{N}\frac{\epsilon_{{k}}^{{0i}}}{\left( {E-E_{{k}}^{\rm {0r}}} \right)^{2}+\left( {\epsilon_{{k}}^{ {0i}}} \right)^{2}}\right] \\ & = N_{\rm{b}}{\text{π}} +\sum_{r = 1}^{N_{\rm{r}}}\delta_{{r}}+\sum_{c = 1}^{N_{\rm{c}}}\delta_{{c}}-\sum_{k = 1}^{N}\delta_{{k}},\end{split} $(9)

View in Article

$ \sigma_{l+} = \frac{4{\text{π}}}{k^{2}}\left( {l+1} \right)\sin^{2}\delta_{l+} \sigma_{l-} = \frac{4{\text{π}}}{k^{2}}\left( {l} \right)\sin^{2}\delta_{l-}, $(10)

View in Article

Xiao-Wei Wang, Jian-You Guo. Investigation of n-α scattering by combining complex momentum representation and Green’s function [J]. Acta Physica Sinica, 2019, 68(9): 092101-1
Download Citation