• Chinese Journal of Lasers
  • Vol. 49, Issue 18, 1801001 (2022)
Xin Zhang1, Cunzhu Tong1、*, Kaidi Cai1、2, Yanjing Wang1, Lijie Wang1, and Sicong Tian1
Author Affiliations
  • 1State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202249.1801001 Cite this Article Set citation alerts
    Xin Zhang, Cunzhu Tong, Kaidi Cai, Yanjing Wang, Lijie Wang, Sicong Tian. 2.3 W 3.5 μm Fiber Laser Based on Bidirectional Pumping[J]. Chinese Journal of Lasers, 2022, 49(18): 1801001 Copy Citation Text show less
    References

    [1] Sorokina I T, Vodopyanov K L[M]. Solid-state mid-infrared laser sources(2003).

    [2] Mahon R, Burris H R, Ferraro M S et al. A comparative study of 3.6 μm and 1.55 μm atmospheric transmission[J]. Proceedings of SPIE, 6951, 69510Q(2008).

    [3] Yang J Y, Gong F Q, Liu R et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Flight Control & Detection, 3, 34-42(2020).

    [4] Jiang J T, Wei M E, Xiong Z D et al. Observation of dentin ablation using an Er∶YAG laser in a sub-pulse sequence mode[J]. Chinese Journal of Lasers, 48, 0107001(2021).

    [5] Bawden N, Matsukuma H, Henderson-Sapir O et al. Actively Q-switched dual-wavelength pumped Er3+∶ZBLAN fiber laser at 3.47 μm[J]. Optics Letters, 43, 2724-2727(2018).

    [6] Jobin F, Fortin V, Maes F et al. Gain-switched fiber laser at 3.55 μm[J]. Optics Letters, 43, 1770-1773(2018).

    [7] Luo H Y, Yang J, Liu F et al. Watt-level gain-switched fiber laser at 3.46 μm[J]. Optics Express, 27, 1367-1375(2019).

    [8] Wei J C, Li P, Yu L P et al. Mode-locked fiber laser of 3.5 μm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 20, 011404(2022).

    [9] To bben H. Room temperature cw fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters, 28, 1361-1362(1992).

    [10] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).

    [11] Fortin V, Maes F, Bernier M et al. Watt-level erbium-doped all-fiber laser at 3.44 μm[J]. Optics Letters, 41, 559-562(2016).

    [12] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [13] Lemieux-Tanguay M, Fortin V, Boilard T et al. 15 W all-fiber laser at 3.55 μm[J]. Optics Letters, 47, 289-292(2022).

    [14] Qin Z P, Xie G Q, Ma J G et al. Mid-infrared Er∶ZBLAN fiber laser reaching 3.68 μm wavelength[J]. Chinese Optics Letters, 15, 111402(2017).

    [15] Zhang C X, Wu J D, Tang P H et al. ~3.5 μm Er3+∶ZBLAN fiber laser in dual-end pumping regime[J]. IEEE Access, 7, 147238-147243(2019).

    [16] Malouf A, Henderson-Sapir O, Gorjan M et al. Numerical modeling of 3.5 μm dual-wavelength pumped erbium-doped mid-infrared fiber lasers[J]. IEEE Journal of Quantum Electronics, 52, 16332584(2016).

    [17] Ashoori V, Malakzadeh A. Explicit exact three-dimensional analytical temperature distribution in passively and actively cooled high-power fibre lasers[J]. Journal of Physics D: Applied Physics, 44, 355103(2011).

    Xin Zhang, Cunzhu Tong, Kaidi Cai, Yanjing Wang, Lijie Wang, Sicong Tian. 2.3 W 3.5 μm Fiber Laser Based on Bidirectional Pumping[J]. Chinese Journal of Lasers, 2022, 49(18): 1801001
    Download Citation