• High Power Laser and Particle Beams
  • Vol. 32, Issue 5, 052001 (2020)
Hailong Zhao, Bo Xiao, Ganghua Wang, and Qiang Wang
Author Affiliations
  • Institute of Fluid Physics, CAEP, P. O. Box 919-105, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.190357 Cite this Article
    Hailong Zhao, Bo Xiao, Ganghua Wang, Qiang Wang. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32(5): 052001 Copy Citation Text show less
    References

    [1] Aymar R. The ITER project[J]. IEEE Trans Plasma Science, 6, 1187(1997).

    [2] Shimomura Y, Spears W. Review of the ITER project[J]. IEEE Trans Plasma Science, 14, 1369(2004).

    [3] Huang Chuanjun, Li Laifeng. Magnetic confinement fusion: A brief review[J]. Front Energy, 12, 305(2018).

    [4] Hurricane O A, Springer P T, Patel P K. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 26, 052704(2019).

    [5] McCrory R L, Meyerhofer D D, Betti R. Progress in direct-drive inertial confinement fusion[J]. Phys Plasmas, 15, 055503(2008).

    [6] Mordecai D R, Meyerhofer1 D D, Betti R. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial[J]. Phys Plasmas, 6, 1690(1999).

    [8] Thio Y C F, Panarella E, Knupp C E, et al. Magized target fusion in a spheroidal geometry with stoff drivers[C]The 2nd Conference on Current Trends in International Fusion Research. 1999: 113.

    [9] Parks P B. On the efficacy of imploding plasma liners for magnetized fusion target compression[J]. Phys Plasmas, 15, 062506(2008).

    [10] Cassibry J T, Stanic M, Hsu S C. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry[J]. Phys Plasmas, 19, 052702(2012).

    [11] Schoenberg K F, Siemon R E. Magized target fusion: A proofofprinciple research proposal[R].LAUR982413

    [12] Kirkpatrick R C. Magized target fusion(MTF) principle status international collabation[C]Latin America Wkshop on Plasma Physics. 1998.

    [13] Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 23, 263(1983).

    [14] Perkins L J, M Ho D D, Logan B G. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion[J]. Phys Plasmas, 24, 062708(2017).

    [15] Slutz S A, Herrmann M C, Vesey R A. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 17, 056303(2010).

    [16] Harvey-Thompson A, Geissel M, Jennings C. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 26, 032707(2019).

    [17] Paradela J, Garcia-Rubio F, Sanz J. Alpha heating enhancement in MagLIF targets: A simple analytic model[J]. Phys Plasmas, 26, 012705(2019).

    [18] Perkins L J, Logan B G, Zimmerman G B. Two-dimensional simulation of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields[J]. Phys Plasmas, 20, 072708(2013).

    [19] Slutz S A, Roger A V. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 108, 025003(2012).

    [20] Sefkow A B, Slutz S A, Koning J M. Design of magnetized liner inertial fusion experiments using the Z facility[J]. Phys Plasmas, 21, 072711(2014).

    [21] Slutz S A. Magized liner inertial fusion(MagLIF): The promise challenges[C]MagLIF Wkshop. 2012.

    [22] Gomez M R, Slutz S A, Sefkow A B. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 113, 155003(2014).

    [23] Knapp P F, Gomez M R, Hansen S B. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 26, 012704(2019).

    [24] Pecover J D, Chittenden J P. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects[J]. Phys Plasmas, 22, 102701(2015).

    [25] Appelbe B, Pecover J, Chittenden J. The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion[J]. High Energy Density Physics, 22, 27(2017).

    [26] Knapp C E, Kirkpatrick R C. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept[J]. Phys Plasmas, 21, 070701(2014).

    [27] Marinak M M, Kerbel G D, Gentile N A. Three-dimensional HYDRA simulations of National Ignition Facility targets[J]. Phys Plasmas, 8, 2275(2001).

    [28] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) targets simulations[J]. Comput Phys Commun, 203, 226(2016).

    [29] Ramis R. 3D simulations of thin shell capsule implosions[C]The 2nd International Conference on Matter Radiation at Extremes. 2017.

    [30] Wu Fuyuan. Running MULTIIFE stalone in WindowsLinux operating system[C]Local Symposium. 2017.

    [31] Chen Shijia. Numerical simulation of MagLIF by MULTIIFE[C]Local Symposium. 2017.

    [32] McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 22, 052708(2015).

    [33] McBride R. D, Slutz S A, Vesey R A. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 23, 012705(2016).

    [34] Ryutov D D, Cuneo M E, Herrman M C. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments[J]. Phys Plasmas, 19, 062706(2012).

    [35] Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Phys Plasmas, 22, 042702(2015).

    [36] Lindemuth I R. The ignition design space of magnetized target fusion[J]. Phys Plasmas, 22, 122712(2015).

    [37] Garcia-Rubio F, Sanz J. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface[J]. Phys Plasmas, 24, 072710(2017).

    [38] Garcia-Rubio F, Sanz J. Mass diffusion and liner material effect in a MagLIF fusion-like plasma[J]. Phys Plasmas, 25, 082112(2018).

    [39] Garcia-Rubio F, Sanz J, Betti R. Magnetic flux conservation in an imploding plasma[J]. Phys Rev E, 97, 011201(2018).

    [40] Sinars D B, Slutz S A, Herrmann M C. Measurement of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility[J]. Phys Rev Lett, 105, 185001(2010).

    [41] Peterson K J, Yu E P, Sinars D B. Herrmann simulations of electro-thermal instability growth in solid aluminum rods[J]. Phys Plasmas, 20, 056305(2013).

    [42] Peterson K J, Awe T J, Yu E P. Electro-thermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Phys Rev Lett, 112, 135002(2014).

    [43] Awe T J, McBride R D, Jennings C A. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Phys Rev Lett, 111, 235005(2013).

    [44] Sefkow A B. On the helical instability efficient stagnation pressure production in thermonuclear magized inertial fusion[C]58th Annual Meeting of the Division of Plasma Physics of the American Physical Society. 2016.

    [45] Seyler C E, Martin M R, Hamlin N D. Helical instability in MagLIF due to axial flux compression by low-density plasma[J]. Phys Plasmas, 25, 062711(2018).

    [46] Peterson K J. Dramatic reduction of magoRayleigh Tayl instability growth in magically driven Zpinch liners [C]20th International Conference on Plasma Science. 2015.

    [47] Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nucl Fusion, 40, 59(2000).

    [48] Gomez M R, Slutz S A, Sefkow A B. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments[J]. Phys Plasmas, 22, 056306(2015).

    [49] Barnak D H. Laser-driven magnetized liner inertial fusion on OMEGA[J]. Phys Plasmas, 24, 056310(2017).

    [50] Davies J R, Davies J R, Betti R. Laser-driven magnetized liner inertial fusion[J]. Phys Plasmas, 24, 062701(2017).

    [51] Sinars D B. Magized Liner Inertial Fusion (MagLIF) research at Sia National Labaties [C]1st Chinese Pulsed Power Society Wkshop. 2015.

    [52] Geissel M. LEH transmission early fuel heating f MagLIF with Zbeamlet [C]45th Anomalous Absption Conference. 2015.

    [53] Gomez M. Recent progress in Magized Liner Inertial Fusion (MagLIF) experiments[C]20th IEEE Pulsed Power Conference. 2015.

    [54] Geissel M, Awe T J, Bliss D E, et al. Nonlinear laserplasma interaction in magized liner inertial fusion[C]Proc of SPIE. 2016: 97310O.

    [55] Geissel M, Harvey-Thompson A J, Awe T J. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets[J]. Phys Plasmas, 25, 022706(2018).

    [56] Davies J R, Bahr R E, Barnak D H. Laser entrance window transmission and reflection measurements for preheating in magnetized liner inertial fusion[J]. Phys Plasmas, 25, 062704(2018).

    [57] Slutz S A. On the feasibility of ged particlebeam preheat f MagLIF[R]. S 20151515R.

    [58] Hansen S. Investigating inertial confinement fusion target fuel conditions through X-ray spectroscopy[J]. Phys Plasmas, 19, 056312(2012).

    [59] Hansen S. Transpt in diagnostics of Magized Liner Inertial Fusion(MagLIF) experiments[C]Radiation High Energy Density Physics Wkshop. 2015.

    [60] Rochau G A. MagLIF the potential of highspeed single lineofsight detection f ICF[R]. S 20154415PE.

    [61] Hansen S B, Sefkow A B, Nagayama T N. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion[J]. Phys Plasmas, 22, 122708(2015).

    [62] Patrick K. Magized Liner Inertial Fusion (MagLIF) experiments on Z: Spectroscopy what’s been learned about stagnation [R]. S 20155078PE.

    [63] Schmit P F, Knapp P F, Hansen S B. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion[J]. Phys Rev Lett, 113, 155004(2014).

    [64] Knapp P F, Schmit P F, Hansen S B. Effects of magnetization on fusion product trapping and secondary neutron spectra[J]. Phys Plasmas, 22, 056312(2015).

    [65] Fooks J A, Carlson L C, Fitzsimmons P. Evolution of Magnetized Liner Inertial Fusion(MagLIF) targets[J]. Fusion Sci Technol, 73, 1(2018).

    [66] Awe T J, Shelton K P, Sefkow A B. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion(MagLIF) program[J]. Rev Sci Instrum, 88, 093515(2017).

    [67] Lamppa D C. The path to 30 tesla: field coil designs f the Magized Liner Inertial Fusion (MagLIF) concept at Sia’s Z facility[C]. S 20154163C.

    [68] Gourdain P A, Adams M B, Davies J R. Axial magnetic field injection in magnetized liner inertial fusion[J]. Phys Plasmas, 24, 102712(2017).

    [69] Shipley G A, Awe T J, Hutsel B T. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns[J]. Phys Plasmas, 25, 052703(2018).

    [70] Slutz S A, Stygar W A, Gomez M R. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators[J]. Phys Plasmas, 23, 022702(2016).

    [71] Slutz S A. Scaling of magnetized inertial fusion with drive current rise-time[J]. Phys Plasmas, 25, 082707(2018).

    Hailong Zhao, Bo Xiao, Ganghua Wang, Qiang Wang. Research progress of Magnetized Liner Inertial Fusion[J]. High Power Laser and Particle Beams, 2020, 32(5): 052001
    Download Citation