• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 2, 102 (2024)
Zhi WANG1,2, Jiuzhe WEI1,2, Yun WANG1,2, and Qiang LI1,2
Author Affiliations
  • 1Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 2Key Laboratory of Advanced Optical Remote Sensing Technology of Beijing, Beijing 100094, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.02.010 Cite this Article
    Zhi WANG, Jiuzhe WEI, Yun WANG, Qiang LI. A Review of SNR Enhancement Techniques for Space-Based Remote Sensing Images[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 102 Copy Citation Text show less
    References

    [5] T LOUPAS, W N MCDICKEN, P L ALLAN. An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images. IEEE Transactions on Circuits and Systems, 36, 129-135(1989).

    [6] I CONSTANTIN, C RICHARD, R LENGELLE et al. Nonlinear Regularized Wiener Filtering with Kernels: Application in Denoising MEG Data Corrupted by ECG. IEEE Transactions on Signal Processing, 54, 4796-4806(2006).

    [8] B CHEN, X FENG, R WU et al. Adaptive Wavelet Filter with Edge Compensation for Remote Sensing Image Denoising. IEEE Access, 7, 91966-91979(2019).

    [11] DONG H, WANG F. ImageDenoising Based on Bi Wavelet Transfm Median Filter[C]. 2012 Symposium on Photonics Optoelectronics, May, 2123, 2012, ShangHai, China. IEEE, 2012: 13. DOI: 10.1109SOPO.2012.6270998.

    [12] J ZHU, J ZHOU, C ZHOU et al. A New Combination Filtering Method to Remove Mixed Noise of Remote Sensing Images. Geomatics and Information Science of Wuhan University, 42, 348-354(2017).

    [13] K DABOV, A FOI, V KATKOVNIK et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [15] Z GONG, Z SHEN, K C TOH. Image Restoration with Mixed or Unknown Noises. Multiscale Modeling & Simulation, 12, 458-487(2014).

    [19] H Y YANG, X Y WANG, P P NIU et al. Image Denoising Using Nonsubsampled Shearlet Transform and Twin Support Vector Machines. Neural Networks, 57, 152-165(2014).

    [20] G S El-TAWEL, A K HELMY. An Edge Detection Scheme Based on Least Squares Support Vector Machine in A Contourlet HMT Domain. Applied Soft Computing, 26, 418-427(2015).

    [22] J HAN, J YUE, Y ZHANG et al. Local Sparse Structure Denoising for Low-Light-Level Image. IEEE Transactions on Image Processing, 24, 5177-5192(2015).

    [24] G PANDA, B MAJHI, S K MEHER et al. A Novel Filtering Scheme for Impulse Noise Cancellation. IETE Journal of Research, 48, 163-170(2002).

    [25] D ZHANG, T H NISHIMURA. Pulse Coupled Neural Network Based Anisotropic Diffusion Method for 1/f Noise Reduction. Mathematical and Computer Modelling, 52, 2085-2096(2010).

    [27] JAIN V, SEUNG S. Natural Image Denoising with Convolutional wks[C]Proceedings of the 21st International Conference on Neural Infmation Processing Systems, December 810, 2008, Vancouver British Columbia, Canada. 2008: 769–776.

    [28] K ZHANG, W ZUO, Y CHEN et al. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26, 3142-3155(2017).

    [29] K ZHANG, W ZUO, L ZHANG. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Transactions on Image Processing, 27, 4608-4622(2018).

    [30] GUO S, YAN Z, ZHANG K, et al. Toward Convolutional Blind Denoising of Real Photographs[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, June, 1620, 2019, Califnia, USA. 2019: 17121722. DOI: 10.48550arXiv.1807.04686.

    [31] KIM Y, SOH J W, PARK G Y, et al. Transfer Learning from Synthetic to RealNoise Denoising with Adaptive Instance Nmalization[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, June, 1419, 2020. Califnia, USA. 2020: 34823492. DOI: 10.1109CVPR42600.2020.00354.

    [32] PARK T, LIU M Y, WANG T C, et al. Gaugan: Semantic Image Synthesis with Spatially Adaptive Nmalization[M]ACM SIGGRAPH 2019 RealTime Live!. 2019: 11.

    [38] HOU J, NING L. MultiScale Residual Convolutional Neural wk f Haze Removal of Remote Sensing Images[J]. Remote Sensing, 2018, 10(6): 945.

    [39] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[C] Proceedings of the 31st International Conference on Neural Infmation Processing Systems, December 49, 2017, Califnia USA. 2017: 60006010.

    [40] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Wth 16x16 Wds: Transfmers f Image Recognition at Scale[C]. International Conference on Learning Representation(ICLR), May, 48, 2021, Vienna, Austria. DOI: 10.48550arXiv.2010.11929.

    [41] CHEN H, WANG Y, GUO T, et al. PreTrained Image Processing Transfmer[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, December18, 2021, KualaLumpur, Malaysia. 2021: 1229912310. DOI: 10.48550arXiv.2012.00364.

    [42] WANG Z, CUN X, BAO J, et al. Ufmer: A general UShaped Transfmer f Image Restation[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, June, 1824, 2022, New leans, USA. 2022: 1768317693. DOI: 10.1109CVPR52688.2022.01716.

    [44] WEI K X, FU Y, YANG J, et al. A PhysicsBased Noise Fmation Model f Extreme LowLight Raw Denoising[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, June, 1419, 2020, Califnia, USA. 2020: 27582767. DOI: 10.48550arXiv.2003.12751.

    [45] FENG H, WANG L, WANG Y, et al. Learnability Enhancement f LowLight Raw Denoising: Where Paired Real Data Meets Noise Modeling[C]Proceedings of the 30th ACM International Conference on Multimedia, October, 1014, 2022, Lisbon, Ptugal. 2022: 14361444. DOI: 10.11453503161.3548186.

    [46] ZHANG Y, QIN H, WANG X, et al. Rethinking Noise Synthesis Modeling in Raw Denoising[C]Proceedings of the IEEECVF International Conference on Computer Vision, March, 10, 2021, Montreal, Canada. 2021: 45934601. DOI: 10.48550arXiv.2110.04756.

    [47] MOSELEY B, BICKEL V, LOPEZFRANCOS I G, et al. Extreme LowLight EnvironmentDriven Image Denoising Over Permanently Shadowed Lunar Regions with a Physical Noise Model[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition, June, 2025, 2021, Nashville, TN, USA. 2021: 63176327. DOI: 10.1109CVPR46437.2021.00625.