• Nano-Micro Letters
  • Vol. 16, Issue 1, 107 (2024)
Ze Wu, Xiuli Tan, Jianqiao Wang, Youqiang Xing..., Peng Huang, Bingjue Li and Lei Liu*|Show fewer author(s)
Author Affiliations
  • School of Mechanical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01326-3 Cite this Article
    Ze Wu, Xiuli Tan, Jianqiao Wang, Youqiang Xing, Peng Huang, Bingjue Li, Lei Liu. MXene Hollow Spheres Supported by a C–Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption[J]. Nano-Micro Letters, 2024, 16(1): 107 Copy Citation Text show less
    References

    [1] J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32, 2201129 (2022).

    [2] S. Li, X. Tang, X. Zhao, S. Lu, J. Luo et al., Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 133, 238–248 (2023).

    [3] Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. 2, 2100077 (2022).

    [4] T.-T. Liu, M.-Q. Cao, Y.-S. Fang, Y.-H. Zhu, M.-S. Cao, Green building materials lit up by electromagnetic absorption function: a review. J. Mater. Sci. Technol. 112, 329–344 (2022).

    [5] R. Dilli, R. Chandra, D. Jordhana, Ultra-massive multiple input multiple output technologies for 6G wireless networks. Eng. Sci. 16, 308–318 (2021).

    [6] S. Singh, T. Sharan, A.P. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2022).

    [7] S. Al-Zhrani, N.M. Bedaiwi, I.F. El-Ramli, A.Z. Barasheed, A. Abduldaiem et al., Underwater optical communications: a brief overview and recent developments. Eng. Sci. 16, 146–186 (2021).

    [8] J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4, 761–767 (2021).

    [9] J. Cao, H. Yao, Y. Pang, J. Xu, C. Lan et al., Dual-band piezoelectric artificial structure for very low frequency mechanical antenna. Adv. Compos. Hybrid Mater. 5, 410–418 (2022).

    [10] G. Qi, Y. Liu, L. Chen, P. Xie, D. Pan et al., Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid Mater. 4, 1226–1238 (2021).

    [11] Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Microwave absorbing materials: multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1970059 (2019).

    [12] S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. 5, 2440–2460 (2022).

    [13] Y. Wang, L. Yao, Q. Zheng, M.-S. Cao, Graphene-wrapped multiloculated nickel ferrite: a highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 15, 6751–6760 (2022).

    [14] X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018).

    [15] J. Zhou, F. Guo, J. Luo, G. Hao, G. Liu et al., Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. J. Mater. Chem. C 10, 1470–1478 (2022).

    [16] X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021).

    [17] J. Guo, S. Xi, Y. Zhang, X. Li, Z. Chen et al., Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Food Agrofor. 13, 900 (2023).

    [18] J. Ruan, Z. Chang, H. Rong, T.S. Alomar, D. Zhu et al., High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213, 118208 (2023).

    [19] Y. Huang, G. Liu, D. Liu, M. Hao, P. Xie et al., Excellent microwave absorption performance in porous Co/C nanocomposites by biomass conversion. ES Food Agrofor. 12, 888 (2023).

    [20] D. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023).

    [21] H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021).

    [22] R. Chandra, B. Shivamurthy, S. Gowda, M. Kumar, Flexible linear low-density polyethylene laminated aluminum and nickel foil composite tapes for electromagnetic interference shielding. Eng. Sci. 21, 777 (2022).

    [23] B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5, 704–754 (2022).

    [24] B. Zhao, L. Liang, Z. Bai, X. Guo, R. Zhang et al., Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ. 14, 79–86 (2021).

    [25] X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021).

    [26] X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously. Carbon 210, 118046 (2023).

    [27] Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang et al., The recent progress of MXene-Based microwave absorption materials. Carbon 174, 484–499 (2021).

    [28] X. Li, D. Xu, D. Zhou, S. Pang, C. Du et al., Vertically stacked heterostructures of MXene/rGO films with enhanced gradient impedance for high-performance microwave absorption. Carbon 208, 374–383 (2023).

    [29] H. Zhang, H. Ji, G. Dai, J. Chen, J. Xu et al., Nanoarchitectonics of integrated impedance gradient MXene/PPy/polyester composite fabric for enhanced microwave absorption performances. Compos. Part A Appl. Sci. Manuf. 163, 107163 (2022).

    [30] H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 755–765 (2022).

    [31] C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021).

    [32] H.B. Parse, I. Patil, B. Kakade, A. Swami, Cobalt nanoparticles encapsulated in N-doped carbon on the surface of MXene (Ti3C2) play a key role for electroreduction of oxygen. Energy Fuels 35, 17909–17918 (2021).

    [33] W. Luo, M. Wang, K. Wang, P. Yan, J. Huang et al., A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 9, e2104163 (2022).

    [34] S.H. Siddiki, K. Verma, B. Chakraborty, S. Das, V.K. Thakur et al., Defect dipole-induced HfO2-coated Ti3C2Tx MXene/nickel ferrite nanocomposites for enhanced microwave absorption. ACS Appl. Nano Mater. 6, 1839–1848 (2023).

    [35] Y.-R. Zhang, B.-C. Wang, S.-L. Gao, L.-P. Qiu, Q.-H. Zheng et al., Electrospun MXene nanosheet/polymer composites for electromagnetic shielding and microwave absorption: a review. ACS Appl. Nano Mater. 5, 12320–12342 (2022).

    [36] X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022).

    [37] H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022).

    [38] M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017).

    [39] Z. Zhao, Z. Gao, D. Lan, K. Kou, MOFs-derived hollow materials for electromagnetic wave absorption: prospects and challenges. J. Mater. Sci. Mater. Electron. 32, 25631–25648 (2021).

    [40] Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022).

    [41] R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020).

    [42] R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015).

    [43] C. Wang, X. Liu, T. Yang, D. Sridhar, H. Algadi et al., An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep. Purif. Technol. 320, 124144 (2023).

    [44] S.U. Rehman, R. Ahmed, K. Ma, S. Xu, T. Tao et al., Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng. Sci. 13, 71–78 (2021).

    [45] H. Xu, M. Zu, H. Cheng, D. Liu, W. Xie, A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Adv. Compos. Hybrid Mater. 5, 2896–2905 (2022).

    [46] S.J. Rahaman, A. Samanta, M.H. Mir, B. Dutta, Metal-organic frameworks (MOFs): a promising candidate for stimuli-responsive drug delivery. ES Mater. Manuf. 19, 792 (2023).

    [47] P. Bag, G. Singh, S. Singha, G. Roymahapatra, Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic applications: a mini review. Eng. Sci. 13, 1–10 (2021).

    [48] H. Wang, J. Zhao, Z. Wang, P. Liu, Bird-nest-like multi-interfacial MXene@SiCNWs@Co/C hybrids with enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 15, 4580–4590 (2023).

    [49] Y. Ren, X. Wang, J. Ma, Q. Zheng, L. Wang et al., Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: dimension design and morphology regulation. J. Mater. Sci. Technol. 132, 223–251 (2023).

    [50] Z. Zou, M. Ning, Z. Lei, X. Zhuang, G. Tan et al., 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18GHz. Carbon 193, 182–194 (2022).

    [51] L. Huang, X. Liu, R. Yu, An efficient Co/C microwave absorber with tunable co nanoparticles derived from a ZnCo bimetallic zeolitic imidazolate framework. Part. Part. Syst. Charact. 35, 1800107 (2018).

    [52] A. Elsonbaty, A.M. Elshaer, M. Harb, M. Soliman, S. Ebrahim et al., Novel ZIF67/Mn/MWCNTs decorated with layer double hydroxide supercapacitor electrodes. Electrochim. Acta 368, 137577 (2021).

    [53] Q. Xu, S. Chen, J. Xu, X. Duan, L. Lu et al., Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin. J. Electroanal. Chem. 880, 114765 (2021).

    [54] X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017).

    [55] Y. Cui, F. Wu, J. Wang, Y. Wang, T. Shah et al., Three dimensional porous MXene/CNTs microspheres: preparation, characterization and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 145, 106378 (2021).

    [56] S.H. Siddiki, C.K. Maity, K. Verma, S. Das, S. Das et al., Influence of exfoliated boron nitride for fabrication of a lightweight wideband microwave absorbing material. ACS Appl. Eng. Mater. 1, 1566–1574 (2023).

    [57] S. Yang, C. Shi, K. Qu, Z. Sun, H. Li et al., Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett. 33, 2063–2074 (2023).

    [58] F. Gao, Y. Liu, C. Jiao, S.M. El-Bahy, Q. Shao et al., Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J. Polym. Sci. 61, 2677–2687 (2023).

    [59] X. Meng, Y. Li, N. AlMasoud, W. Wang, T.S. Alomar et al., Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272, 125856 (2023).

    [60] T. Li, H. Wei, Y. Zhang, T. Wan, D. Cui et al., Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr. Polym. 309, 120678 (2023).

    [61] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    [62] J. Guo, Z. Chen, X. Xu, X. Li, H. Liu et al., Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid Mater. 5, 1769–1777 (2022).

    [63] R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022).

    [64] M.-H. Fang, S.-Y. Wu, Y.-H. Chang, M. Narwane, B.-H. Chen et al., Mechanistic insight into the synergetic interaction of ammonia borane and water on ZIF-67-derived Co@Porous carbon for controlled generation of dihydrogen. ACS Appl. Mater. Interfaces 13, 47465–47477 (2021).

    [65] J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019).

    [66] Y. Sun, J. Xu, W. Qiao, X. Xu, W. Zhang et al., Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 8, 31878–31886 (2016).

    [67] L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019).

    [68] S. Hou, W. Ding, S. Liu, H. Zheng, J. Zhai et al., Fast oxidation and deep removal of As(III) by integrating metal–organic framework ZIF-67 and sulfite: performance and mechanism. Chem. Eng. J. 460, 141785 (2023).

    [69] X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. Part B Eng. 152, 316–323 (2018).

    [70] P. Musto, A. Borriello, P. Agoretti, T. Napolitano, G. Di Florio et al., Selective surface modification of syndiotactic polystyrene films: a study by Fourier transform- and confocal-Raman spectroscopy. Eur. Polym. J. 46, 1004–1015 (2010).

    [71] A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121, 19983–19988 (2017).

    [72] A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. MXenes. (Jenny Stanford Publishing, New York, 2023), pp. 333–355.

    [73] S.M. Ansari, R.D. Bhor, K.R. Pai, D. Sen, S. Mazumder et al., Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414, 171–187 (2017).

    [74] Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017).

    [75] W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO @ N-doped porous carbon/Co3 ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018).

    [76] I. Pathak, D. Acharya, K. Chhetri, P. Chandra Lohani, S. Subedi et al., Ti3C2Tx MXene embedded metal–organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors. J. Mater. Chem. A 11, 5001–5014 (2023).

    [77] C. Li, Z. Dai, W. Liu, P. Kantichaimongkol, P. Yu et al., A self-sacrifice template strategy to synthesize Co-LDH/MXene for lithium-ion batteries. Chem. Commun. 57, 11378–11381 (2021).

    [78] L. Yang, Y. Chen, Q. Wen, H. Xu, X. Pan et al., 2D layered structure-supported imidazole-based metal-organic framework for enhancing the power generation performance of microbial fuel cells. Electrochim. Acta 428, 140959 (2022).

    [79] Q. Li, Q. Jiao, Y. Yan, H. Li, W. Zhou et al., Optimized Co–S bonds energy and confinement effect of hollow MXene@CoS2/NC for enhanced sodium storage kinetics and stability. Chem. Eng. J. 450, 137922 (2022).

    [80] Z. Wang, Z. Xu, H. Huang, X. Chu, Y. Xie et al., Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano 14, 4916–4924 (2020).

    [81] H. Hwang, S. Byun, S. Yuk, S. Kim, S.H. Song et al., High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021).

    [82] Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021).

    [83] X. Han, Y. Huang, L. Ding, Y. Song, T. Li et al., Ti3C2Tx MXene nanosheet/metal–organic framework composites for microwave absorption. ACS Appl. Nano Mater. 4, 691–701 (2021).

    [84] P.H. Fang, Cole—cole diagram and the distribution of relaxation times. J. Chem. Phys. 42, 3411–3413 (1965).

    [85] Y. Wang, H. Zhang, Q. Wu, S. Li, H. Gao et al., Magnetic enhanced high-efficiency electromagnetic wave absorbing MXene/Fe3O4 composite absorbers at 2–40 GHz. J. Mater. Chem. C 11, 4171–4181 (2023).

    [86] X.-X. Wang, M. Zhang, J.-C. Shu, B. Wen, W.-Q. Cao et al., Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 184, 136–145 (2021).

    [87] C. Sun, Q. Li, Z. Jia, G. Wu, P. Yin, Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 454, 140277 (2023).

    [88] H. Zhao, Q. Wang, H. Ma, Y. Zhao, L. Li et al., Hollow spherical NiFe-MOF derivative and N-doped rGO composites towards the tunable wideband electromagnetic wave absorption: experimental and theoretical study. Carbon 201, 347–361 (2023).

    [89] Z. Ding, Z. Du, Y. Liu, Q. Zhang, Z. Zhao et al., Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Compos. Part B Eng. 249, 110403 (2023).

    [90] Z. Liu, Y. Fan, Z. Liu, Q. Zhang, B. Zhang, Wrinkled 3D MoS2/RGO/NC composite microspheres: optimal composition and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 161, 107119 (2022).

    [91] Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546–8554 (2022).

    [92] S. Dong, P. Hu, X. Li, C. Hong, X. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020).

    [93] S. Li, T. Ma, Z. Chai, Z. Zhang, M. Zhu et al., Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption. Carbon 207, 105–115 (2023).

    [94] Q. Wang, Z. Zhang, S. Shi, F. Wu, Z. Zhang et al., Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction. J. Electroanal. Chem. 894, 115397 (2021).

    [95] W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao et al., A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021).

    [96] H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022).

    [97] X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022).

    [98] G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022).

    [99] R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021).

    [100] R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020).

    [101] L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, e2106195 (2022).

    [102] R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloy. Compd. 867, 159039 (2021).

    [103] R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanoparticles. J. Alloy. Compd. 848, 156453 (2020).

    [104] Y. Guo, H. Liu, D. Wang, Z.M. El-Bahy, J.T. Althakafy et al., Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res. 15, 6841–6850 (2022).

    Ze Wu, Xiuli Tan, Jianqiao Wang, Youqiang Xing, Peng Huang, Bingjue Li, Lei Liu. MXene Hollow Spheres Supported by a C–Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption[J]. Nano-Micro Letters, 2024, 16(1): 107
    Download Citation