• Nano-Micro Letters
  • Vol. 16, Issue 1, 205 (2024)
Xuanchi Yu1,2, Jia Guo1,*, Yulin Mao1, Chengwei Shan2..., Fengshou Tian2, Bingheng Meng2, Zhaojin Wang2, Tianqi Zhang1, Aung Ko Ko Kyaw2, Shuming Chen2, Xiaowei Sun2, Kai Wang2, Rui Chen2,** and Guichuan Xing1,***|Show fewer author(s)
Author Affiliations
  • 1Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao 999078, People’s Republic of China
  • 2Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01405-5 Cite this Article
    Xuanchi Yu, Jia Guo, Yulin Mao, Chengwei Shan, Fengshou Tian, Bingheng Meng, Zhaojin Wang, Tianqi Zhang, Aung Ko Ko Kyaw, Shuming Chen, Xiaowei Sun, Kai Wang, Rui Chen, Guichuan Xing. Enhancing the Performance of Perovskite Light-Emitting Diodes via Synergistic Effect of Defect Passivation and Dielectric Screening[J]. Nano-Micro Letters, 2024, 16(1): 205 Copy Citation Text show less
    References

    [1] Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    [2] F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    [3] G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    [4] Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun et al., High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33, 2005570 (2021).

    [5] K. Hirose, R. Sinmyo, J. Hernlund, Perovskite in Earth’s deep interior. Science 358, 734–738 (2017).

    [6] M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    [7] Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    [8] S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum et al., Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016).

    [9] Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D ruddlesden–popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    [10] S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv. Sci. 7, 2002445 (2020).

    [11] Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu et al., Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness. Adv. Mater. 31, e1903030 (2019).

    [12] J. Guo, Z. Shi, J. Xia, K. Wang, Q. Wei et al., Phase tailoring of ruddlesden-popper perovskite at fixed large spacer cation ratio. Small 17, e2100560 (2021).

    [13] I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. Engl. 53, 11232–11235 (2014).

    [14] D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    [15] W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    [16] M.-H. Du, Density functional calculations of native defects in CH3NH3PbI3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).

    [17] N. Liu, C. Yam, First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).

    [18] J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    [19] Y. Chen, N. Li, L. Wang, L. Li, Z. Xu et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10, 1112 (2019).

    [20] J. Guo, K. Wang, T. Liu, Q. Wei, S. Mei et al., Suppressing the defects in cesium-based perovskites via polymeric interlayer assisted crystallization control. J. Mater. Chem. A 9, 26149–26158 (2021).

    [21] Z. Xiao, Q. Wang, X. Wu, Y. Wu, J. Ren et al., Efficient light-emitting devices based on mixed-cation lead halide perovskites. Org. Electron. 77, 105546 (2020).

    [22] X. Yu, T. Liu, Q. Wei, C. Liang, K. Wang et al., Tailoring the surface morphology and phase distribution for efficient perovskite electroluminescence. J. Phys. Chem. Lett. 11, 5877–5882 (2020).

    [23] M.-H. Park, J. Park, J. Lee, H.S. So, H. Kim et al., Efficient perovskite light-emitting diodes using polycrystalline core–shell-mimicked nanograins. Adv. Funct. Mater. 29, 1902017 (2019).

    [24] H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019).

    [25] N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    [26] M.-C. Tang, Y. Fan, D. Barrit, R. Li, H.X. Dang et al., Efficient hybrid mixed-ion perovskite photovoltaics: in situ diagnostics of the roles of cesium and potassium alkali cation addition. Sol. RRL 4, 2000272 (2020).

    [27] Y. Zhang, Y. Huang, X. Wang, J. Sun, R. Si et al., Collective and individual impacts of the cascade doping of alkali cations in perovskite single crystals. J. Mater. Chem. C 8, 15351–15360 (2020).

    [28] Y. Chu, C. Wang, L. Ma, X. Feng, B. Wang et al., Unveiling the photoluminescence regulation of colloidal perovskite quantum dots via defect passivation and lattice distortion by potassium cations doping: not the more the better. J. Colloid Interface Sci. 596, 199–205 (2021).

    [29] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    [30] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich et al., Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett. 3, 2671–2678 (2018).

    [31] A. Kanwat, N. Yantara, Y.F. Ng, T.J.N. Hooper, P.J.S. Rana et al., Stabilizing the electroluminescence of halide perovskites with potassium passivation. ACS Energy Lett. 5, 1804–1813 (2020).

    [32] L. Gao, Y. Zhang, X. Wei, T. Zheng, W. Zhao et al., Potassium iodide doping strategy for high-efficiency perovskite solar cells revealed by ultrafast spectroscopy. J. Phys. Chem. Lett. 13, 711–717 (2022).

    [33] F. Yang, H. Chen, R. Zhang, X. Liu, W. Zhang et al., Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 30, 1908760 (2020).

    [34] Z. Guo, Y. Zhang, B. Wang, L. Wang, N. Zhou et al., Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 33, e2102246 (2021).

    [35] R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021).

    [36] F. Zheng, W. Chen, T. Bu, K.P. Ghiggino, F. Huang et al., Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv. Energy Mater. 9, 1901016 (2019).

    [37] J. Cao, S.X. Tao, P.A. Bobbert, C.-P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, e1707350 (2018).

    [38] M.H. Du, Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

    [39] X. Xiao, T. Ye, J. Sun, X. Qu, Z. Ren et al., Capacitance–voltage characteristics of perovskite light-emitting diodes: modeling and implementing on the analysis of carrier behaviors. Appl. Phys. Lett. 120, 243501 (2022).

    [40] J. Sun, Z. Ren, Z. Wang, H. Wang, D. Wu et al., Ionic liquid passivation for high-performance sky-blue quasi-2D perovskite light-emitting diodes. Adv. Opt. Mater. 11, 2202721 (2023).

    [41] K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma et al., Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).

    Xuanchi Yu, Jia Guo, Yulin Mao, Chengwei Shan, Fengshou Tian, Bingheng Meng, Zhaojin Wang, Tianqi Zhang, Aung Ko Ko Kyaw, Shuming Chen, Xiaowei Sun, Kai Wang, Rui Chen, Guichuan Xing. Enhancing the Performance of Perovskite Light-Emitting Diodes via Synergistic Effect of Defect Passivation and Dielectric Screening[J]. Nano-Micro Letters, 2024, 16(1): 205
    Download Citation