• Frontiers of Optoelectronics
  • Vol. 2, Issue 4, 368 (2009)
Rujian LIN*, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, and Jiajun YE
Author Affiliations
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
  • show less
    DOI: 10.1007/s12200-009-0026-8 Cite this Article
    Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Frontiers of Optoelectronics, 2009, 2(4): 368 Copy Citation Text show less
    References

    [1] Gliese U, Neilsen T N, Bruun M, Christensen E L, Stubkjzr K E, Lindgren S, Broberg B. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers. IEEE Photonics Technology Letters, 1992, 4(8): 936-938

    [2] Noel L, Moodie D G, Marcenac D D, Westbrook L D, Nesset D. Novel techniques for high-capacity 60-GHz fiber-radio transmission systems. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1416-1423

    [3] Braun R P, Grosskopf G, Rohde D, Schmidt F. Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking. IEEE Photonics Technology Letters, 1998, 10(5): 728-730

    [4] Ohno T, Sato K, Fukushima S, Doi Y, Matsuoka Y. Application of DBR mode-locked lasers in millimeter-wave fiber-radio system. Journal of Lightwave Technology, 2000, 18(1): 44-49

    [5] Ogusu M, Inagaki K, Mizuguchi Y, Ohira T. Carrier generation and data transmission on millimeter-wave bands using two-mode locked Fabry-Perot slave lasers. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(2): 382-391

    [6] Taniguchi T, Sakurai N. An optical/electrical two-step heterodyne for wideband 60 GHz radio-on-fiber access. In: Proceedings of Optical Fiber Communication Conference. 2004, FE1

    [7] O’Reilly J J, Lane P M, Heidemann R, Hofstetter R. Optical generation of very narrow linewidth millimeter wave signals. Electronics Letters, 1992, 28(25): 2309-2311

    [8] Schmuck H. Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion. Electronics Letters, 1995, 31(21): 1848-1849

    [9] Rolf H, Harald S, Rolf H. Dispersion effects in optical millimeterwave systems using self-heterodyne method for transport and generation. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9): 2263-2269

    [10] Gliese U, Norskov S, Nielson T N. Chromatic dispersion in fiberoptic microwave and millimeter-wave links. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(10): 1716-1724

    [11] Smith G H, Novak D, Ahmed Z. Techniques for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electronics Letters, 1997, 33(1): 74-75

    [12] Park J, Sorin W V, Lau K Y. Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission. Electronics Letters, 1997, 33(6): 512-513

    [13] Kang H S, Choi W Y. CMOS-compatible 60 GHz harmonics optoelectronic mixer. In: Proceedings of IEEE/MTT-S International Microwave Symposium. 2007, 233-236

    [14] Choi W Y, Kim J Y. Technologies for fiber-fed 60 GHz wireless systems. In: Proceedings of Optical Fiber Communication Conference (OFC). 2007, OWN-1

    [15] Koonen T, Ng’oma A, Smulders P, Van Den Boom H, Monroy I T, Khoe G D. In-house networks using multimode polymer optical fiber for broadband wireless services. Photonic Network Communications, 2003, 5(2): 177-187

    [16] Koonen T, Ng’oma A, Larrode M G, Huijskens F, Monroy I T, Khoe G D. Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks. In: Proceedings of European Conference on Optical Communication. 2004, 120-123

    [17] Larrode M G, Koonen A M J, Olmos J J V, Verdurmen E J M, Turkiewicz J P. Dispersion tolerant radio-over-fibre transmission of 16 and 64 QAM radio signals at 40 GHz. Electronics Letters, 2006, 42(15): 872-874

    [18] XiuML, Lin R J. Report on 40 GHz-RoF bidirectional transmission experiment system with pilot tone. In: Proceedings of Conference on Lasers and Electro-Optics/Pacific Rim. 2007, 493-494

    [19] Shen Y C, Zhang X M, Chen K S. Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering. IEEE Photonics Technology Letters, 2005, 17(6): 1277-1279

    [20] Park C S, Lee C G, Park C S. Photonic frequency upconversion based on stimulated Brillouin scattering. IEEE Photonics Technology Letters, 2007, 19(10): 777-779

    [21] Chen H S, Lin R J, Ye J J. A scheme of yielding tunable millimeterwave based on stimulated Brillouin scattering. In: Proceedings of China-Japan Joint Microwave Conference. 2008, 591-594

    Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Frontiers of Optoelectronics, 2009, 2(4): 368
    Download Citation