• Optoelectronics Letters
  • Vol. 18, Issue 5, 276 (2022)
Haddout Assiya*, Fahoume Mounir, Raidou Abderrahim, and Lharch Mohamed
Author Affiliations
  • Materials and Subatomic Physics Laboratory, Faculty of Sciences, Ibn Tofail University, B.P 133, Kenitra 14000, Morocco
  • show less
    DOI: 10.1007/s11801-022-1144-4 Cite this Article
    Assiya Haddout, Mounir Fahoume, Abderrahim Raidou, Mohamed Lharch. Numerical modeling of ZnSnO/CZTS based solar cells[J]. Optoelectronics Letters, 2022, 18(5): 276 Copy Citation Text show less
    References

    [1] HADDOUT A, RAIDOU A, FAHOUME M. A review on the numerical modeling of CdS/CZTS-based solar cells[J]. Applied physics A, 2019, 125(2):124.

    [2] YAN C, HUANG J, SUN K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature energy, 2018, 3(9):764-772.

    [3] JACKSON P, WUERZ R, HARISKOS D, et al. Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%[J]. Physica status solidi (RRL)-rapid research letters, 2016, 10(8):583-586.

    [4] GREEN M, DUNLOP E, HOHL E J, et al. Solar cell efficiency tables (version 57)[J]. Progress in photovoltaics:research and applications, 2021, 29(1):3-15.

    [5] COUREL M, ANDRADE-ARVIZU J A, VIGIL-GALáN O. The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin film solar cells[J]. Materials research express, 2016, 3(9):095501.

    [6] COUREL M, VALENCIA-RESENDIZ E, ANDRADEARVIZU J A, et al. Towards understanding poor performances in spray-deposited Cu2ZnSnS4 thin film solar cells[J]. Solar energy materials and solar cells, 2017, 159:151-158.

    [7] LIU B, GUO J, HAO R, et al. Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell[J]. Solar energy, 2020, 201:219-226.

    [8] CROVETTO A, PALSGAARD M L N, GUNST T, et al. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells[J]. Applied physics letters, 2017, 110:083903.

    [9] CUI X, SUN K, HUANG J, et al. Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer[J]. Chemistry of materials, 2018, 30(21):7860-7871.

    [10] HADDOUT A, RAIDOU A, FAHOUME M, et al. Influence of CZTS layer parameters on cell performance of kesterite thin-film solar cells[C]//Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, April 15-17, 2018, Saidia, Morocco. Singapore:Springer, 2019:640-646.

    [11] HADDOUT A, FAHOUME M, QACHAOU A, et al. Understanding effects of defects in bulk Cu2ZnSnS4 absorber layer of kesterite solar cells[J]. Solar energy, 2020, 211:301-311.

    [12] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin solid films, 2000, 361-362:527-532.

    [13] SHIN B, GUNAWAN O, ZHU Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber:Cu2ZnSnS4 solar cell with 8.4% efficiency[J]. Progress in photovoltaics research & applications, 2013, 21 (1):72-76.

    [14] ZHANG H, CHENG S, YU J, et al. Prospects of Zn (O, S) as an alternative buffer layer for Cu2ZnSnS4 thin: film solar cells from numerical simulation[J]. Micro & nano letters, 2016, 11(7):386-390.

    [15] DJINKWI W M, OUéDRAOGO S, NDJAKA J M B. Theoretical analysis of minority carrier lifetime and Cd-free buffer layers on the CZTS based solar cell performances[J]. Optik, 2019, 183:284-293.

    [16] KAPILASHRAMI M, KRONAWITTER C X, T?RNDAHL T, et al. Soft X-ray characterization of Zn1?xSnxOy electronic structure for thin film photovoltaics[J]. Physical chemistry chemical physics, 2012, 14: 10154.

    [17] SO H S, HWANG S B, JUNG D H, et al. Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements[J]. Journal of the Korean physical society, 2017, 70(7):706-713.

    [18] JHUMA F A, RASHID M J. Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell[J]. Journal of theoretical and applied physics, 2020, 14(1):75-84.

    [19] GRENET L, EMIEUX F, ANDRADE-ARVIZU J, et al. Sputtered ZnSnO buffer layers for kesterite solar cells[J]. ACS applied energy materials, 2020, 3(2): 1883-1891.

    [20] PLATZER-BJ?RKMAN C, FRISK C, LARSEN J K, et al. Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1? xSnxOy buffer layers[J]. Applied physics letters, 2015, 107(24): 243904.

    [21] ERICSON T, LARSSON F, T?RNDAHL T, et al. Zinc tin oxide buffer layer and low temperature post annealing resulting in a 9.0% efficient Cd:free Cu2ZnSnS4 solar cell[J]. Solar RRL, 2017, 1(5):1700001.

    [22] LARSEN J K, LARSSON F, T?RNDAHL T, et al. Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency[J]. Advanced energy materials, 2019, 9(21): 1900439.

    [23] TAJIMA S, UMEHARA M, MISE T. Photovoltaic properties of Cu2ZnSnS4 cells fabricated using ZnSnO and ZnSnO/CdS buffer layers[J]. Japanese journal of applied physics, 2016, 55(11):112302.

    [24] CUI X, SUN K, HUANG J, et al. Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers[J]. Energy & environmental science, 2019, 12(9):2751-2764.

    Assiya Haddout, Mounir Fahoume, Abderrahim Raidou, Mohamed Lharch. Numerical modeling of ZnSnO/CZTS based solar cells[J]. Optoelectronics Letters, 2022, 18(5): 276
    Download Citation