
- High Power Laser Science and Engineering
- Vol. 12, Issue 3, 03000e28 (2024)
Abstract
Keywords
1 Introduction
As an advanced accelerator method, laser wakefield accelerators (LWFAs)[1,2] have been developing steadily both theoretically and experimentally in recent decades[3–13] owing to rapidly advancing laser technology, especially chirped-pulse amplification[14]. A variety of mechanisms have been proposed to control the electron beams properties, such as energy spectra[3–7], controllability[8], stability[9,10], beam emittance[11,12] and beam energy[13], which are comparable with those from conventional particle accelerators. Many efforts have been made with controllable injection mechanisms to improve the electron beam quality, such as density-transition injection[15,16], ionization-induced injection[17] or colliding-pulse injection[18]. However, the control of electron beam polarization has not been investigated thoroughly.
Spin-polarized electron beams have been widely used in material science[19], particle and nuclear physics[20–23]. Such beams are generally produced by radiative polarization due to the Sokolov–Ternov effect in conventional accelerators[24,25], that is, storage rings, which takes around a few hours in polarization build-up. In contrast, the acceleration process can be accomplished within a few picoseconds in a plasma accelerator. In
While these injection mechanisms have been investigated to control the polarization on LWFA electron beams[27–33], a self-injection mechanism with relatively simple setup still needs to be analyzed thoroughly. There are two self-injection schemes, transverse and longitudinal, as demonstrated in Ref. [36]. The transverse injection mainly happens in the
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
Previous studies[27–33] have shown that the properties of the electron beams depend on the electron injection mechanism. The electron polarization mainly changes during the injection process. In this paper, we study the polarization of the electron beam for the longitudinal injection scheme in a fully pre-polarized plasma with an up-ramp-plateau density profile. The longitudinal scheme is found to be more beneficial in generating high-spin polarization electron beams as compared to the transverse case. Our work is divided into three sections. Section 2 introduces the simulation setup with a brief description of the longitudinal injection scheme. In Section 3, we present numerical results and a discussion. The conclusions can be found in Section 4.
2 Simulation method
In this study, 2D particle-in-cell (PIC) simulations were performed with a modified version of the EPOCH code[43], which includes the spin evolution module based on the Thomas–Bargmann–Michel–Telegdi (TBMT)[25,44] equation via the Boris pusher method[45]. The electron spin is regarded as a quasi-classical quantity with a vector
In the simulation, the laser propagates in the
The initial longitudinal profile of the pre-polarized plasma is an up-ramp followed by a plateau with constant density
Figure 1.(a) Schematic representation of the initially pre-polarized plasma. The longitudinal profile of the electron density is marked by the yellow dashed line, including an up-ramp from to
with length
and a plateau with
. The initial polarization direction is aligned along the
-direction, as denoted by the arrows. The laser is focused at the left-hand boundary of the plasma
. For the case of longitudinal injection (Case A), (b)–(d) show the density distribution of electron longitudinal polarization
at three different times, that is,
is the product of electron density (normalized by
and the average of polarization in the
-direction
per cell. Here,
,
,
,
and
. For the case of transverse injection (Case B), (e)–(g) present the corresponding distributions of
at different times, where
,
,
and the other parameters are the same as in Case A. The electrons with kinetic energy
in Case A (or
in Case B) are chosen as the accelerated electrons, which are marked by a green box in (d) and (g), respectively.
3 Results and discussion
Generally, the profile of the wakefield depends on the parameters of the laser and plasma, which inevitably causes the variation of the self-injection scheme, further leading to different evolution of spin polarization during the self-injection process. When the laser spot size is larger than the plasma wavelength (Case A), the wakefield is a quasi-1D regime, as shown in Figure 1(b). At this time, the wakefield propagates in the up-ramp density. When the wakefield reaches the uniform density regime
Not surprisingly, the distribution of the electron polarization is different in the two cases and the influence of the laser on the electron polarization cannot be ignored. In the quasi-1D regime (Case A), the values of
Figure 2.The history of particle properties, (a),
(b) and the average kinetic energy
(c) about accelerated electrons in the case of the longitudinal scheme. The distribution of
(or
) in the
The histories of
For the case of the transverse injection scheme (Case B), as analyzed in Ref. [30], the evolution of polarization can be divided into four stages. (i) Here,
The electron spin evolution during the transverse injection has been studied through single particle dynamics in the work of Fan et al.[30]. It is found that the electron spin is mainly affected by the magnetic field of the bubble during the second stage and affected by the electric field of the bubble in the third stage. In the fourth stage, the electron moves along with the laser axis, so its spin does not change obviously. For the longitudinal injection, a typical accelerated electron is also analyzed, as shown in Figure 3. The trajectory of the electron in the wakefield coordinate system between 195 and
Figure 3.(a) Trajectory of a typical tracked electron for the longitudinal self-injection scheme (Case A) at the wakefield frame, where is the phase velocity of the wakefield calculated using the plateau density. The electron is initially located at the front of the wakefield. (b) The history of
(blue solid line) and
(red dashed line) for the tracked electron. (c) The evolution of the spin direction
with time. (d) The evolution of
(green solid line), the term
(blue dashed line) and the term
(magenta dashed line) of
(black solid line) caused by
, and the term
(red solid line) of
caused by
for the tracked electron.
Moreover, the evolutions of
In order to investigate the dynamics of the electron spin, the contribution of the electromagnetic field to the precession frequency
As shown in Figure 3(c), the electron precesses in the XY plane, which is caused by the part of
Figure 4.(a) The green dots denote the positions of the chosen accelerated electrons, which are marked in at the laser axis is presented as a black solid line. (b) The spectra of
(black line) and the longitudinal position
(magenta line) for the accelerated electrons at
. (c) The profiles of
(red line) and
(blue line) at the laser axis. (d) The spectra of the longitudinal velocity
(red line) and transverse velocity
(blue line).
As revealed in Figure 2(a), in the third stage, the electron spin does not change obviously. The distribution of the magnetic field at
In this work, the spin dynamics of injection electrons and the related physical mechanism have been briefly addressed based on a series of 2D simulations. Since the evolutions of the laser pulse and bubble regime are 3D nonlinear phenomena, it is necessary to use 3D simulation to analyze more accurately the characteristics of the electron beam, such as electron charge and transverse emittance[40,47].The polarization of electron beams could also be influenced by other effects, that is, beam loading and laser polarization. Besides, a plasma with 100% of the initial polarization rate was assumed since the state of pre-polarization has not been measured in the experiment. The polarization of the acceleration electron could be smaller than the result of simulation, even using the longitudinal injection mechanism. The details will be studied in our future work.
4 Summary
We have studied the generation of an electron beam, including its polarization properties in the bubble regime of an LWFA. By using a series of 2D PIC simulations, it is found that the depolarization process depends on the self-injection scheme. Compared with transverse self-injection, longitudinal self-injection is more suitable to generate an electron beam with higher polarization. The accelerated electrons move around the laser axis in the case of longitudinal injection. It causes the motion and the spin of the electrons to oscillate in the laser field, and the net influence of the laser field can be ignored. The contribution of the bubble field to the spin precession is also negligible, since the transverse electromagnetic field and the transverse velocity of the electrons are both very small. Ultimately, an attosecond electron beam with polarization of
References
[1] T. Tajima, J. Dawson. Phys. Rev. Lett., 43, 267(1979).
[2] E. Esarey, C. Schroeder, W. Leemans. Rev. Mod. Phys., 81, 1229(2009).
[3] A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W. P. Leemans. Phys. Rev. Lett., 122, 084801(2019).
[4] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W. P. Leemans. Nature, 431, 538(2004).
[5] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, K. Krushelnick. Nature, 431, 535(2004).
[6] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka. Nature, 431, 541(2004).
[7] X. M. Wang, R. Zgadzaj, N. Fazel, Z. Y. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M. C. Downer. Nat. Commun., 4, 1988(2013).
[8] M. H. Cho, V. B. Pathak, H. T. Kim, C. H. Nam. Sci. Rep., 8, 16924(2018).
[9] J. Osterhoff, A. Popp, Z. Major, B. Marx, T. P. Rowlands-Rees, M. Fuchs, M. Geissler, R. Hörlein, B. Hidding, S. Becker, E. A. Peralta, U. Schramm, F. Grüner, D. Habs, F. Krausz, S. M. Hooker, S. Karsch. Phys. Rev. Lett., 101, 085002(2008).
[10] A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, L. Veisz. Phys. Rev. Lett., 110, 185006(2013).
[11] E. Brunetti, R. P. Shanks, G. G. Manahan, M. R. Islam, B. Ersfeld, M. P. Anania, S. Cipiccia, R. C. Issac, G. Raj, G. Vieux, G. H. Welsh, S. M. Wiggins, D. A. Jaroszynski. Phys. Rev. Lett., 105, 215007(2010).
[12] R. Weingartner, S. Raith, A. Popp, S. Chou, J. Wenz, K. Khrennikov, M. Heigoldt, A. R. Maier, N. Kajumba, M. Fuchs, B. Zeitler, F. Krausz, S. Karsch, F. Grüner. Phys. Rev. Spec. Top. Accel. Beams, 15, 111302(2012).
[13] W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, S. M. Hooker. Nat. Phys., 2, 696(2006).
[14] G. Mourou, D. Umstadter. Phys. Fluids B: Plasma Phys., 4, 2315(1992).
[15] S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai. Phys. Rev. E, 58, R5257(1998).
[16] J. Wang, M. Zeng, D. Z. Li, X. Wang, W. Lu, J. Gao. Matter Radiat. Extremes, 7, 054001(2022).
[17] A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, C. Joshi. Phys. Rev. Lett., 104, 025003(2010).
[18] E. Esarey, R. Hubbard, W. Leemans, A. Ting, P. Sprangle. Phys. Rev. Lett., 79, 2682(1997).
[19] P. J. Schultz, K. G. Lynn. Rev. Mod. Phys., 60, 701(1988).
[20] C. Glashausser. Annu. Rev. Nucl. Particle Sci., 29, 33(1979).
[21] J. R. Danielson, D. H. E. Dubin, R. G. Greaves, C. M. Surko. Rev. Mod. Phys., 87, 247(2015).
[22] G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A. A. Babich, V. Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen, J. Clarke, J. E. Clendenin, J. Dainton, K. Desch, M. Diehl, B. Dobos, T. Dorland, H. K. Dreiner, H. Eberl, J. Ellis, K. Flöttmann, H. Fraas, F. Franco-Sollova, F. Franke, A. Freitas, J. Goodson, J. Gray, A. Han, S. Heinemeyer, S. Hesselbach, T. Hirose, K. Hohenwarter-Sodek, A. Juste, J. Kalinowski, T. Kernreiter, O. Kittel, S. Kraml, U. Langenfeld, W. Majerotto, A. Martinez, H.-U. Martyn, A. Mikhailichenko, C. Milstene, W. Menges, N. Meyners, K. Mönig, K. Moffeit, S. Moretti, O. Nachtmann, F. Nagel, T. Nakanishi, U. Nauenberg, H. Nowak, T. Omori, P. Osland, A. A. Pankov, N. Paver, R. Pitthan, R. Pöschl, W. Porod, J. Proulx, P. Richardson, S. Riemann, S. D. Rindani, T. G. Rizzo, A. Schälicke, P. Schüler, C. Schwanenberger, D. Scott, J. Sheppard, R. K. Singh, A. Sopczak, H. Spiesberger, A. Stahl, H. Steiner, A. Wagner, A. M. Weber, G. Weiglein, G. W. Wilson, M. Woods, P. Zerwas, J. Zhang, F. Zomer. Phys. Rep., 460, 131(2008).
[23] V. Shiltsev, F. Zimmermann. Rev. Mod. Phys., 93, 015006(2021).
[24] A. A. Sokolov, I. M. Ternov. Sov. Phys. J., 10, 39(1967).
[25] S. R. Mane, Yu. M. Shatunov, K. Yokoya. Rep. Prog. Phys., 68, 1997(2005).
[26] D. Sofikitis, P. Glodic, G. Koumarianou, H. Jiang, L. Bougas, P. C. Samartzis, A. Andreev, T. P. Rakitzis. Phys. Rev. Lett., 118, 233401(2017).
[27] M. Wen, M. Tamburini, C. H. Keitel. Phys. Rev. Lett., 122, 214801(2019).
[28] Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung, W. B. Mori, C. Joshi. Phys. Rev. Lett., 126, 054801(2021).
[29] Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, C. Zhang, Y. Wu, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung, W. B. Mori, C. Joshi. Phys. Rev. Res., 4, 033015(2022).
[30] H. C. Fan, X. Y. Liu, X. F. Li, J. F. Qu, Q. Yu, Q. Kong, S. M. Weng, M. Chen, M. Büscher, P. Gibbon, S. Kawata, Z. M. Sheng. New J. Phys., 24, 083047(2022).
[31] Z. Gong, M. J. Quin, S. Bohlen, C. H. Keitel, K. Põder, M. Tamburini. Matter Radiat. Extremes, 8, 064005(2023).
[32] S. Bohlen, Z. Gong, M. J. Quin, M. Tamburini, K. Põder. Phys. Rev. Res., 5, 033205(2023).
[33] T. Sun, Q. Zhao, F. Wan, Y. I. Salamin, J. X. Li. Phys. Rev. Lett., 132, 045001(2024).
[34] Y. T. Wu, L. L. Ji, X. S. Geng, Q. Yu, N. W. Wang, B. Feng, Z. Guo, W. Q. Wang, C. Y. Qin, X. Yan, L. G. Zhang, J. Thomas, A. Hützen, M. Büscher, T. P. Rakitzis, A. Pukhov, B. F. Shen, R. X. Li. New J. Phys., 21, 073052(2019).
[35] Y. T. Wu, L. L. Ji, X. S. Geng, Q. Yu, N. W. Wang, B. Feng, Z. Guo, W. Q. Wang, C. Y. Qin, X. Yan, L. G. Zhang, J. Thomas, A. Hützen, A. Pukhov, M. Büscher, B. F. Shen, R. X. Li. Phys. Rev. E, 100, 043202(2019).
[36] S. Corde, C. Thaury, A. Lifschitz, G. Lambert, K. Ta Phuoc, X. Davoine, R. Lehe, D. Douillet, A. Rousse, V. Malka. Nat. Commun., 4, 1501(2013).
[37] S. V. Bulanov, F. Pegoraro, A. M. Pukhov, A. S. Sakharov. Phys. Rev. Lett., 78, 4205(1997).
[38] A. Pukhov, J. Meyer-ter-Vehn. Appl. Phys. B, 74, 355(2002).
[39] S. Kalmykov, S. A. Yi, V. Khudik, G. Shvets. Phys. Rev. Lett., 103, 135004(2009).
[40] S. Y. Kalmykov, A. Beck, S. A. Yi, V. N. Khudik, M. C. Downer, E. Lefebvre, B. A. Shadwick, D. P. Umstadter. Phys. Plasmas, 18, 056704(2011).
[41] F. Y. Li, Z. M. Sheng, Y. Liu, J. Meyer-ter-Vehn, W. B. Mori, W. Lu, J. Zhang. Phys. Rev. Lett., 110, 135002(2013).
[42] M. K. Weikum, F. Y. Li, R. W. Assmann, Z. M. Sheng, D. Jaroszynski. Nucl. Instrum. Methods Phys. Res. Sect. A, 829, 33(2016).
[43] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, C. P. Ridgers. Plasma Phys. Control. Fusion, 57, 113001(2015).
[44] L. H. Thomas. Nature, 117, 514(1926).
[45] X. F. Li, P. Gibbon, A. Hützen, M. Büscher, S. M. Weng, M. Chen, Z. M. Sheng. Phys. Rev. E, 104, 015216(2021).
[46] J. Thomas, A. Hützen, A. Lehrach, A. Pukhov, L. Ji, Y. Wu, X. Geng, M. Büscher. Phys. Rev. Accel. Beams, 23, 064401(2020).
[47] F. S. Tsung, W. Lu, M. Tzoufras, W. B. Mori, C. Joshi, J. M. Vieira, L. O. Silva, R. A. Fonseca. Phys. Plasmas, 13, 056708(2006).
[48] M. Büscher, R. Adam, C. Tusche, A. Hützen, C. Wiemann, Y.-J. Chen, C. M. Schneider. J. Large-scale Res. Facilit., 6, A138(2020).

Set citation alerts for the article
Please enter your email address