[1] WILKINSON C. Computerized forensic facial reconstruction: A review of current systems[J]. Forensic Science, Medicine, and Pathology, 2005, 1(3): 173-177.
[2] HWANG H S, PARK M K, LEE W J, et al.. Facial soft tissue thickness database for craniofacial reconstruction in Korean adults[J]. Journal of Forensic Sciences, 2012, 57(6): 1442-1447.
[3] SHUI W Y, ZHOU M Q, DENG Q Q, et al.. Densely calculated facial soft tissue thickness for craniofacial reconstruction in Chinese adults[J]. Forensic Science International, 2016, 266:573.e1-573.e12.
[4] BULUT O, SIPAHIOGLU S, HEKIMOGLU B. Facial soft tissue thickness database for craniofacial reconstruction in the Turkish adult population[J]. Forensic Science International, 2014, 242: 44-61.
[5] DONG Y, HUANG L, FENG Z, et al.. Influence of sex and body mass index on facial soft tissue thickness measurements of the northern Chinese adult population[J]. Forensic Science International, 2012, 222(1-3):396.e1-396.e7.
[6] CLAES P, VANDERMEULEN D, DE GREEF S, et al.. Computerized craniofacial reconstruction: conceptual framework and review[J]. Forensic Science International, 2010, 201(1-3): 138-145.
[7] SHUI W Y, ZHOU M Q, WU ZH K, et al.. An approach of craniofacial reconstruction based on registration[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(4): 607-614. (in Chinese)
[8] DUAN F Q, HUANG D H, TIAN Y, et al.. 3D face reconstruction from skull by regression modeling in shape parameter spaces[J]. Neurocomputing, 2015, 151: 674-682.
[9] LEE W J, YOON A Y, SONG M K, et al.. The archaeological contribution of forensic craniofacial reconstruction to a portrait drawing of a Korean historical figure[J]. Journal of Archaeological Science, 2014, 49: 228-236.
[10] DENG Q Q, ZHOU M Q, WU ZH K, et al.. A regional method for craniofacial reconstruction based on coordinate adjustments and a new fusion strategy[J]. Forensic Science International, 2016, 259: 19-31.
[11] LEE W J, WILKINSON C M, HWANG H S, et al.. Correlation between average tissue depth data and quantitative accuracy of forensic craniofacial reconstructions measured by geometric surface comparison method[J]. Journal of Forensic Sciences, 2015, 60(3): 572-580.
[12] BERAR M, TILOTTA F M, GLAUNS J A, et al.. Craniofacial reconstruction as a prediction problem using a Latent Root Regression model[J]. Forensic Science International, 2011, 210(1-3): 228-236.
[13] DE GREEF S, CLAES P, MOLLEMANS W, et al.. Semi-automated ultrasound facial soft tissue depth registration: method and validation[J]. Journal of Forensic Science, 2005, 50(6): 1282-1288.
[14] CLAES P, VANDERMEULEN D, DE GREEF S, et al.. Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: methodology and validation[J]. Forensic Science International, 2006, 159(S1): S147-S158.
[15] KUSTR A, FORR L, KALINA I, et al.. FACE‐R-A 3D database of 400 living individuals' full head CT‐and face scans and preliminary GMM analysis for craniofacial reconstruction[J]. Journal of Forensic Sciences, 2013, 58(6): 1420-1428.
[17] MITCHELL J S, MOUNT D M, PAPADIMITRIOU C H. The discrete geodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668.
[18] XIN S Q, WANG G J. Improving Chen and Han's algorithm on the discrete geodesic problem[J]. ACM Transactions on Graphics, 2009, 28(4): 104.
[19] BOOKSTEIN F L. Principal warps: Thin-plate splines and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(6): 567-585.
[22] HU Y L, DUAN F Q, YIN B C, et al.. A hierarchical dense deformable model for 3D face reconstruction from skull[J]. Multimedia Tools and Applications, 2013, 64(2): 345-364.