[1] Li C, Peng Z, Huang T Y, et al. A review on recent progress of portable short-range noncontact microwave radar systems[J]. IEEE Trans. Microw. Theory Tech., 2017, 65(5): 1692-1706.
[2] Long T, Liang Z N, Liu Q H. Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition[J]. Sci. China Inf. Sci., 2019, 62(4): 40301.
[3] Pan S L, Zhang Y M. Microwave photonic radars[J]. J. Lightwave Technol., 2020, 38(19): 5450-5484.
[4] Panda S S S, Panigrahi T, Parne S R, et al. Recent advances and future directions of microwave photonic radars: A review[J]. IEEE Sens. J., 2021, 21(19): 21144-21158.
[5] Pan S L, Ye X W, Zhang Y M, et al. Microwave photonic array radars[J]. IEEE J. of Microwaves, 2021, 1(1): 176-190.
[6] Yao J P. Microwave photonics[J]. J. Lightwave Technol., 2009, 27(3): 314-335.
[7] Li Y Y, Wen A J, Zhang W, et al. A simple and tunable photonic generation of frequency-doubled triangular waveform based on two cascaded modulators[J]. Opt. Commun., 2019, 445: 231-235.
[8] Ou H, Chen B, Fu H, et al. Microwave-photonic frequency doubling utilising phase modulator and fibre Bragg grating[J]. Electron. Lett., 2008, 44(2): 131-133.
[9] Zhai W L, Wen A J, Shan D J. Photonic generation and transmission of frequency-doubled triangular and square waveforms based on two Mach-Zehnder modulators and a Sagnac loop[J]. J. Lightwave Technol., 2019, 37(9): 1937-1945.
[10] Li S Q, Gao X, Li H Y, et al. Photonic generation of frequency-doubled triangular-shaped waveforms based on a PM-MZM modulator[J]. J. Russ. Laser Res., 2020, 41(5): 521-527.
[11] Wang D F, Tang X F, Xi L X, et al. A filterless scheme of generating frequency 16-tupling millimeter-wave based on only two MZMs[J]. Opt. Laser Technol., 2019, 116: 7-12.
[12] Zhang J X, Jiang W J, Yu Y, et al. Photonics-based simultaneous measurement of distance and velocity using multi-band LFM microwave signals with opposite chirps[J]. Opt. Express, 2019, 27(20): 27580-27591.
[13] Cheng H X, Zou X H, Lu B, et al. High-resolution range and velocity measurement based on photonic LFM microwave signal generation and detection[J]. IEEE Photon. J., 2019, 11(1): 1-8.
[14] Lee T Y, Jeon S Y, Han J H, et al. A simplified technique for distance and velocity measurements of multiple moving objects using a linear frequency modulated signal[J]. IEEE Sens. J., 2016, 16(15): 5912-5920.
[15] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Process. Mag., 2008, 25(2): 21-30.
[16] Baraniuk R G, Cevher V, Duarte M F, et al. Model-based compressive sensing[J]. IEEE Trans. Inf. Theory, 2010, 56(4): 1982-2001.
[17] Ender J H G. On compressive sensing applied to radar[J]. Signal Process., 2010, 90(5): 1402-1414.
[18] Li G, Zhang H, Wang X Q, et al. ISAR 2-D imaging of uniformly rotating targets via matching pursuit[J]. IEEE Trans. Aerosp. Electron. Syst., 2012, 48(2): 1838-1846.
[19] Zhu Z J, Chi H, Jin T, et al. Photonic compressive sensing for analog-to-information conversion with a delay-line based microwave photonic filter[J]. Opt. Commun., 2016, 371: 83-88.
[20] Valley G C, Sefler G A, Shaw T J. Compressive sensing of sparse radio frequency signals using optical mixing[J]. Opt. Lett., 2012, 37(22): 4675-4677.
[21] Chi H, Chen Y, Mei Y, et al. Microwave spectrum sensing based on photonic time stretch and compressive sampling[J]. Opt. Lett., 38(2): 136-138.
[22] Yan L, Dai Y T, Xu K, et al. Integrated multifrequency recognition and down conversion based on photonics-assisted compressive sampling[J]. IEEE Photon. J., 2012, 4(3): 664-670.