• Optics and Precision Engineering
  • Vol. 32, Issue 12, 1824 (2024)
Silin ZHAO1,2,3, Quanquan MU1,3,*, and Dayu LI1,3
Author Affiliations
  • 1State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun30033, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing10049, China
  • 3Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun100, China
  • show less
    DOI: 10.37188/OPE.20243212.1824 Cite this Article
    Silin ZHAO, Quanquan MU, Dayu LI. A large field of view infrared staring imaging system based on liquid crystal grating[J]. Optics and Precision Engineering, 2024, 32(12): 1824 Copy Citation Text show less
    Structure of the MWIR staring imaging system
    Fig. 1. Structure of the MWIR staring imaging system
    Telecentric beam path in image space
    Fig. 2. Telecentric beam path in image space
    MTF of each sub FOV unit
    Fig. 3. MTF of each sub FOV unit
    Field lens array
    Fig. 4. Field lens array
    Figures of system vignetting
    Fig. 5. Figures of system vignetting
    Polarization independent LC shutter array
    Fig. 6. Polarization independent LC shutter array
    Schematic diagram of liquid crystal devices in a liquid crystal shutter array
    Fig. 7. Schematic diagram of liquid crystal devices in a liquid crystal shutter array
    Zemax simulation of a large FOV infrared staring imaging system based on liquid crystal grating, where different colors represent the light in different sub apertures
    Fig. 8. Zemax simulation of a large FOV infrared staring imaging system based on liquid crystal grating, where different colors represent the light in different sub apertures
    Actual aperture light transmission diagram of the first surface of the rear lens group
    Fig. 9. Actual aperture light transmission diagram of the first surface of the rear lens group
    Rear lens group structure
    Fig. 10. Rear lens group structure
    MTF of each FOV unit
    Fig. 11. MTF of each FOV unit
    Distortion figures of each FOV unit
    Fig. 12. Distortion figures of each FOV unit
    Reverse tracing of Narcissus
    Fig. 13. Reverse tracing of Narcissus
    Tilted LC shutter array
    Fig. 14. Tilted LC shutter array
    Reverse tracking after tilting the LC shutter array
    Fig. 15. Reverse tracking after tilting the LC shutter array
    MTF of the center and left aperture tilting
    Fig. 16. MTF of the center and left aperture tilting
    Image of NITD distribution on infrared detectors
    Fig. 17. Image of NITD distribution on infrared detectors
    焦距f '入瞳直径D视场角2w
    206 mm40 mm10°
    Table 1. Design parameters of front lens group
    场镜阵列焦距f1'准直透镜阵列焦距f2'
    54.7 mm55.9 mm
    Table 2. Design parameters of relay lens group
    液晶光栅的周期Λ液晶光栅的厚度d
    23 μm11.25 μm
    Table 3. Design parameters of LCPG
    SurfYNII/IBAR
    S21-0.716 330.277
    S22-0.103 011.342
    S230.688 633.164
    S24-0.987 160.857
    S25-1.079 780.936
    S26-0.622 470.617
    S270.520 9913.318
    S28-0.444 850.924
    Table 4. YNI and I/IBAR of each lens
    表面

    公差

    操作数

    设置值

    MTF(平均)

    改变

    S3TFRN±2 mm-0.043 918 48
    S5TFRN±2 mm-0.036 983 86
    S4TFRN±2 mm-0.032 480 42
    S2TFRN±2 mm-0.018 941 31
    S4,S6TTHI±0.05 mm-0.010 770 96
    S5TSTX±1.5′-0.009 821 52
    S7,S8TTHI±0.03 mm-0.008 647 26
    S5TSTY±1′-0.003 227 22
    Table 5. Relatively severe tolerance items in the system
    Silin ZHAO, Quanquan MU, Dayu LI. A large field of view infrared staring imaging system based on liquid crystal grating[J]. Optics and Precision Engineering, 2024, 32(12): 1824
    Download Citation