[1] R. J.Taylor. The Stars: Their Structure and Evolution(1994).
[2] R. P.Drake, P. A.Norreys. Focus on high energy density physics. New J. Phys., 16, 065007(2014).
[3] G.Chabrier. Plasma physics and planetary astrophysics. Plasma Phys. Controlled Fusion, 51, 124014(2009).
[4] J. D.Anderson, R.Helled, M.Podolak, G.Schubert. Interior models of Uranus and Neptune. Astrophys. J., 726, 15(2011).
[5] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).
[6] M. A.Nowak, C. S.Reynolds. Fluorescent iron lines as a probe of astrophysical black hole systems. Phys. Rep., 377, 389(2003).
[7] D. R.Inglis, E.Teller. Ionic depression of series limits in one-electron spectra. Astrophys. J., 90, 439(1939).
[8] G. R.Griem. Principles of Plasma Spectroscopy(1997).
[9] D.Salzmann. Atomic Physics in Hot Plasma(1998).
[10] M. S.Murillo, J. C.Weisheit. Dense plasma, screened interactions, and atomic ionizations. Phys. Rep., 302, 1(1998).
[11] R. M.More. Atomic physics in inertial confinement fusion. LLNL technical report, No. UCRL-84991(1981).
[12] J. C.Pain. A model of dense-plasma atomic structure for equation-of-state calculations. J. Phys. B: At., Mol. Opt. Phys., 40, 1553(2007).
[13] P.Allan, C. R. D.Brown, D. J.Hoarty, L. M. R.Hobbs, S. F.James et al. Observations of the effect of ionization-potential depression in hot dense plasma. Phys. Rev. Lett., 110, 265003(2013).
[14] I. E.Golovkin, S. T.Ivancic, C.Mileham, P. M.Nilson, C. R.Stillman et al. Picosecond time-resolved measurements of dense plasma line shifts. Phys. Rev. E, 95, 063204(2017).
[15] A.Unsöld. Zur Berechnung der Zustandssummen für Atome und Ionen in einem teilweise ionisierten Gas. Z. Astrophys., 24, 355(1948).
[16] R. M.Moore, G. B.Zimmermann. Pressure ionization in laser fusion target simulations. J. Quant. Spectrosc. Radiat. Transfer, 23, 517(1980).
[17] K.Pyatt, J.Stewart. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203(1966).
[18] G.Ecker, W.Weizel. Zustandssumme und effective Ionisierungsspannung eines Atoms im Inneren des Plasmas. Ann. Phys., 6, 126(1956).
[19] G.Ecker, W.Kröll. Lowering of the ionization energy for a plasma in thermodynamic equilibrium. Phys. Fluids, 6, 62(1963).
[20] M.Belkhiri, C. J.Fontes, M.Poirier. Influence of the plasma environment on atomic structure using an ion-sphere model. Phys. Rev A, 92, 032501(2015).
[21] T.Döppner, L. B.Fletcher, A. L.Kritcher, T.Ma, A.Pak et al. Observations of continuum depression in warm dense matter with x-ray Thomson scattering. Phys. Rev. Lett., 112, 145004(2014).
[22] B. J. B.Crowley. Average-atom quantum-statistical cell model for hot plasma in local thermodynamic equilibrium over a wide range of densities. Phys. Rev. A, 41, 2179(1990).
[23] S. X.Hu. Continuum lowering and Fermi-surface rising in strongly coupled and degenerate plasmas. Phys. Rev. Lett., 119, 065001(2017).
[24] H.-K.Chung, O.Ciricosta, R. W.Lee, T. R.Preston, S. M.Vinko et al. The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas. High Energy Density Phys., 9, 258(2013).
[25] W.Kraeft, C.Lin, H.Reinholz, G.Röpke. Ionization-potential depression and dynamical structure factor in dense plasmas. Phys. Rev. E, 96, 013202(2017).
[26] X.Li, F. B.Rosmej. Spin-dependent energy-level crossings in highly charged ions due to dense plasma environments. Phys. Rev. A, 82, 022503(2010).
[27] V. A.Astapenko, V. S.Lisitsa, F. B.Rosmej. Springer Series on Atomic, Optical and Plasma Physics(2021).
[28] B.Deschaud, O.Peyrusse, F. B.Rosmej. Generalized atomic processes for interaction of intense femtosecond XUV- and X-ray radiation with solids. Europhys. Lett., 108, 53001(2014).
[29] T.Dzelzainis, E.Galtier, F. Y.Khattak, D.Riley, F. B.Rosmej et al. Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-eV free-electron-laser pulses. Phys. Rev. Lett., 106, 164801(2011).
[30] V. A.Astapenko, X.Li, V. S.Lisitsa, F. B.Rosmej. An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasmas, 26, 033301(2019).
[31] X.Li, F. B.Rosmej. Analytical approach to level delocalization and line shifts in finite temperature dense plasmas. Phys. Lett. A, 384, 126478(2020).
[32] B. I.Cho, H.-K.Chung, O.Ciricosta, K.Engelhorn, S. M.Vinko et al. Creation and diagnosis of a solid-density plasma with an x-ray free-electron laser. Nature, 482, 59(2012).
[33] C. R. D.Brown, O.Ciricosta, T. R.Preston, D. S.Rackstraw, S. M.Vinko et al. Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma. Nat. Commun., 6, 6397(2015).
[34] B.Barbrel, O.Ciricosta, T. R.Preston, D. S.Rackstraw, S. M.Vinko et al. Measurements of continuum lowering in solid-density plasmas created from elements and compounds. Nat. Commun., 7, 11713(2016).
[35] C. R. D.Brown, B.-I.Cho, H.-K.Chung, O.Ciricosta, S. M.Vinko et al. Direct measurements of the ionization potential depression in a dense plasma. Phys. Rev. Lett., 109, 065002(2012).
[36] F. B.Rosmej. Ionization potential depression in an atomic-solid-plasma picture. J. Phys. B: At., Mol. Opt. Phys., 51, 09LT01(2018).
[37] O.Ciricosta, S. M.Vinko, J. S.Wark. Density functional theory calculations of continuum lowering in strongly coupled plasmas. Nat. Commun., 5, 3533(2014).
[38] Z.Jurek, R.Santra, S.-K.Son, R.Thiele, B.Ziaja. Quantum-mechanical calculation of ionization-potential lowering in dense plasmas. Phys. Rev. X, 4, 031004(2014).
[39] J.Gao, Y.Ma, Y.Qu, J.Wang, Y.Wu, F.Zhou. Atomic-state-dependent screening model for hot and warm dense plasmas. Commun. Phys., 4, 148(2021).
[40] B. J. B.Crowley. Continuum lowering—A new perspective. High Energy Density Phys., 13, 84(2014).
[41] B.Deschaud, O.Peyrusse, F. B.Rosmej. Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects. Phys. Plasmas, 27, 063303(2020).
[42] C. A.Iglesias. Comment on ‘Free-free opacity in warm aluminum. High Energy Density Phys., 7, 38(2011).
[43] C. A.Iglesias, P. A.Sterne. Fluctuations and the ionization potential in dense plasmas. High Energy Density Phys., 9, 103(2013).
[44] C. A.Iglesias. A plea for a reexamination of ionization potential depression measurements. High Energy Density Phys., 12, 5(2014).
[45] S. X.Hu, V. V.Karasiev. Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas. Phys. Rev. E, 103, 033202(2021).
[46] P.Beiersdorfer, G. V.Brown, D. J.Hoarty, A.McKelvey, R.Shepherd et al. High resolution measurements of Cl15+ line shifts in hot, solid-density plasmas. Phys. Rev. A, 100, 012511(2019).
[47] M. R.Gomez, S. B.Hansen, E. C.Harding, P. F.Knapp, T.Nagayama et al. Changes in the electronic structure of highly compressed iron revealed by x-ray fluorescence lines and absorption edges. High Energy Density Phys., 24, 39(2017).
[48] E.Engel, S. H.Vosko. Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B, 47, 13164(1993).
[49] A.Djaoui, E.Krousky, O.Renner, D.Salzman, P.Sondhauss et al. Experimental evidence for plasma shifts in Lyman series of aluminium. J. Phys. B:At., Mol. Opt. Phys., 31, 1379(1998).
[50] J. J.Bekx, R.Santra, S.-K.Son, B.Ziaja. Electronic-structure calculations for nonisothermal warm dense matter. Phys. Rev. Res., 2, 033061(2020).
[51] R. D.Cowan. The Theory of Atomic Structure and Spectra(1981).
[52] L.de Billy, R. D.Deslattes, P.Indelicato, E. G. Kessler, E.Lindroth et al. X-ray transition energies: New approach to a comprehensive evaluation. Rev. Mod. Phys., 75, 35(2003).
[53]
[54] D. T.Bishel, D. A.Chin, S. X.Hu, V. V.Karasiev, P. M.Nilson et al. Probing atomic physics at ultrahigh pressure using laser-driven implosions. Nat. Commun., 13, 6780(2022).
[55] M.Bitter, P. C.Efthimion, L.Gao, K. W.Hill, B. F.Kraus et al. Streaked sub-ps-resolution x-ray line shapes and implications for solid-density plasma dynamics (invited). Rev. Sci. Instrum., 93, 103527(2022).
[56] D.Bailie, C.Hyland, R.Irwin, R.Warwick, S.White et al. K-edge structure in shock-compressed chlorinated parylene. Atoms, 11, 135(2023).
[57] R. W.Lee, F. B.Rosmej. Hollow ion emission driven by pulsed intense x-ray fields. Europhys. Lett., 77, 24001(2007).
[58] R.Dachicourt, B.Deschaud, M.Dozières, D.Khaghani, F. B.Rosmej et al. Exotic x-ray emission from dense plasmas. J. Phys. B: At., Mol. Opt. Phys., 48, 224005(2015).
[59] C.Baehtz, E.Brambrink, T.Burian, O.Humphries, M.Smid et al. Plasma screening in mid-charged ions observed by K-shell line emission(2024).
[60] A. H.Gabriel. Dielectronic satellite spectra for highly-charged helium-like ion lines. Mon. Not. R. Astron. Soc., 160, 99(1972).
[61] G. F.Gribakin, J.Kohanoff, D.Riley, S.Sahoo, G.Shabbir Naz. Compton scatter profiles for warm dense matter. Phys. Rev. E, 77, 046402(2008).
[62] K. T.Cheng, W. R.Johnson, J.Nilsen. Thomson scattering in the average-atom approximation. Phys. Rev. E, 86, 036410(2012).
[63] J.-C.Pain. Multi-configuration calculation of ionization potential depression. Plasma, 5, 384(2022).
[64] J. W.bates, M.Busquet, M.Klapisch, T.-G.Lee, A. J.Schmitt et al. Radiative and atomic properties of C and CH plasmas in the warm-dense-matter regime. Phys. Rev. E, 98, 043203(2018).
[65] C.Blancard, G.Faussurier. Density effects on electronic configurations in dense plasmas. Phys. Rev. E, 97, 023206(2018).
[66] M.Bethkenhagen, D. A.Chapman, T.Döppner, D.Kraus, P.Neumayer et al. Observing the onset of pressure-driven K-shell delocalization. Nature, 618, 270(2023).
[67] M.Bethkenhagen, T.Döppner, G.Röpke, M.Schörner, B. B. L.Wite et al. Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas. Phys. Rev. Res., 2, 023260(2020).
[68] L. G.Jiao, A.Liu, H. E.Montgomery, Y. C.Wang, T.Yan et al. Bound state energies and critical bound region in the semiclassical dense hydrogen plasmas. Phys. Plasmas, 31, 042110(2024).
[69] I. P.Grant. Relativistic Quantum Theory of Atoms and Molecules: Theory of Computations(2007).
[70] J.Ekman, J.Frumer, G.Gaifalas, M.Godefoid, P.Jönsson et al. An introduction to relativistic theory as implemented in GRASP. Atoms, 11, 7(2023).