• Nano-Micro Letters
  • Vol. 16, Issue 1, 142 (2024)
Siavash Iravani1、* and Rajender S. Varma2、**
Author Affiliations
  • 1Independent Researcher, W Nazar ST, Boostan Ave Isfahan, Iran
  • 2Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
  • show less
    DOI: 10.1007/s40820-024-01367-8 Cite this Article
    Siavash Iravani, Rajender S. Varma. MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond[J]. Nano-Micro Letters, 2024, 16(1): 142 Copy Citation Text show less
    References

    [1] M. Pilz da Cunha, M.G. Debije, A.P.H.J. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568–6578 (2020).

    [2] L. Shang, W. Zhang, K. Xu, Y. Zhao, Bio-inspired intelligent structural color materials. Mater. Horiz. 6, 945–958 (2019).

    [3] J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61, e202116219 (2022).

    [4] S. Iravani, R.S. Varma, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Mater. Adv. 3, 4783–4796 (2022).

    [5] H. Galinski, G. Favraud, H. Dong, J.S.T. Gongora, G. Favaro et al., Scalable, ultra-resistant structural colors based on network metamaterials. Light Sci. Appl. 6, e16233 (2017).

    [6] Z. Xuan, J. Li, Q. Liu, F. Yi, S. Wang et al., Artificial structural colors and applications. Innovation 2, 100081 (2021).

    [7] Y. Zhao, Y. Zhao, S. Hu, J. Lv, Y. Ying et al., Artificial structural color pixels: a review. Materials 10, 944 (2017).

    [8] S.D. Rezaei, Z. Dong, J.Y. Chan, J. Trisno, R.J. Ng, Q. Ruan, C.W. Qiu, N.A. Mortensen, J.K. Yang, Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021).

    [9] V. Shukla, The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1, 3104–3121 (2020).

    [10] L. Verger, V. Natu, M. Carey, M.W. Barsoum, MXenes: an introduction of their synthesis, select properties, and applications. Trends Chem. 1, 656–669 (2019).

    [11] X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020).

    [12] A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4, e12295 (2022).

    [13] Z. Chen, H. Wang, Y. Cao, Y. Chen, O. Akkus et al., Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 6, 3803–3837 (2023).

    [14] Y. Wang, T. Guo, Z. Tian, L. Shi, S.C. Barman et al., MXenes for soft robotics. Matter 6, 2807–2833 (2023).

    [15] Z.-H. Tang, W.-B. Zhu, Y.-Q. Mao, Z.-C. Zhu, Y.-Q. Li et al., Multiresponsive Ti3C2Tx MXene-based actuators enabled by dual-mechanism synergism for soft robotics. ACS Appl. Mater. Interfaces 14, 21474–21485 (2022).

    [16] D. An, Z. Wang, L. Qin, Y. Wu, S. Lu et al., Preparation of MXene/EP coating for promising anticorrosion and superlow friction properties. Prog. Org. Coat. 183, 107779 (2023).

    [17] R. Giménez, B. Serrano, V. San-Miguel, J.C. Cabanelas, Recent advances in MXene/epoxy composites: trends and prospects. Polymers 14, 1170 (2022).

    [18] M.P. Bilibana, Electrochemical properties of MXenes and applications. Adv. Sens. Energy Mater. 2, 100080 (2023).

    [19] P.G. Grützmacher, S. Suarez, A. Tolosa, C. Gachot, G. Song et al., Superior wear-resistance of Ti3C2Tx multilayer coatings. ACS Nano 15, 8216–8224 (2021).

    [20] X. Miao, Z. Li, S. Liu, J. Wang, S. Yang, MXenes in tribology: current status and perspectives. Adv. Powder Mater. 2, 100092 (2023).

    [21] W. Lian, Y. Mai, C. Liu, L. Zhang, S. Li et al., Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology. Ceram. Int. 44, 20154–20162 (2018).

    [22] A. Rosenkranz, M. Marian, Combining surface textures and MXene coatings—towards enhanced wear-resistance and durability. Surf. Topogr. Metrol. Prop. 10, 033001 (2022).

    [23] M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32, 2270152 (2022).

    [24] T. Zhao, H. Liu, L. Yuan, X. Tian, X. Xue et al., A multi-responsive MXene-based actuator with integrated sensing function. Adv. Mater. Interfaces 9, 2101948 (2022).

    [25] S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu et al., Responsive soft actuators with MXene nanomaterials. Respon. Mater. (2023).

    [26] P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021).

    [27] S. Iravani, Role of MXenes in advancing soft robotics. Soft Matter 19, 6196–6212 (2023).

    [28] J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14, 7055–7065 (2020).

    [29] S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. (2023).

    [30] P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022).

    [31] V. Hwang, A.B. Stephenson, S. Barkley, S. Brandt, M. Xiao et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. Proc. Natl. Acad. Sci. U.S.A. 118, e2015551118 (2021).

    [32] Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 52, 1255–1264 (2019).

    [33] A.D. Khalid, N. Ur-Rehman, G.H. Tariq, S. Ullah, S.A. Buzdar et al., Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species. Chemosphere 310, 136885 (2023).

    [34] R.R. Naik, S. Singamaneni, Introduction: bioinspired and biomimetic materials. Chem. Rev. 117, 12581–12583 (2017).

    [35] S.V. Patwardhan, J.R.H. Manning, M. Chiacchia, Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 12, 110–116 (2018).

    [36] Z. Zhang, Z. Chen, L. Sun, X. Zhang, Y. Zhao, Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 12, 1579–1584 (2019).

    [37] L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 (2021).

    [38] Y. Feng, J. Sun, L. Xu, W. Hong, Angle-independent structurally colored materials with superhydrophobicity and self-healing capability. Adv. Mater. Interfaces 8, 2001950 (2021).

    [39] J. Chen, H.-M. Liu, H. Ren, Y.-F. Zhang, H.-Y. Hou et al., Semitransparent organic solar cells with viewing-angle-independent Janus structural colors. Adv. Opt. Mater. 11, 2201848 (2023).

    [40] J. Zhou, P. Han, M. Liu, H. Zhou, Y. Zhang et al., Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56, 10462–10466 (2017).

    [41] J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018).

    [42] Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019).

    [43] J. Gao, Y. Tang, D. Martella, J. Guo, D.S. Wiersma et al., Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems. Respon. Mater. 1, 230008 (2023).

    [44] Z. Liu, H.K. Bisoyi, Y. Huang, M. Wang, H. Yang et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew. Chem. Int. Ed. 61, e202115755 (2022).

    [45] A. Tittl, Tunable structural colors on display. Light Sci. Appl. 11, 155 (2022).

    [46] X. Li, Y. Yang, C. Valenzuela, X. Zhang, P. Xue et al., Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins. ACS Nano 17, 12829–12841 (2023).

    [47] X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 (2022).

    [48] Y. Hao, S. Zhang, B. Fang, F. Sun, H. Liu et al., A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chin. J. Mech. Eng. 35, 37 (2022).

    [49] L. Chang, D. Wang, Z. Huang, C. Wang, J. Torop et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Adv. Funct. Mater. 33, 2212341 (2023).

    [50] L. Xu, F. Xue, H. Zheng, Q. Ji, C. Qiu et al., An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy 103, 107848 (2022).

    [51] L. Zhang, S. Qu, X. Du, Intelligent soft actuators and flexible devices. Adv. Intell. Syst. 3, 2100173 (2021).

    [52] M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    [53] X. Tang, H. Li, T. Ma, Y. Yang, J. Luo et al., A review of soft actuator motion: actuation, design, manufacturing and applications. Actuators 11, 331 (2022).

    [54] A. Pagoli, F. Chapelle, J.-A. Corrales-Ramon, Y. Mezouar, Y. Lapusta, Review of soft fluidic actuators: classification and materials modeling analysis. Smart Mater. Struct. 31, 013001 (2022).

    [55] H.S. Kang, S.W. Han, C. Park, S.W. Lee, H. Eoh et al., 3D touchless multiorder reflection structural color sensing display. Sci. Adv. 6, eabb 5769 (2020).

    [56] N. Miyamoto, S. Yamamoto, Angular-independent structural colors of clay dispersions. ACS Omega 7, 6070–6074 (2022).

    [57] F. Meng, Z. Wang, S. Zhang, B. Ju, B. Tang, Bioinspired quasi-amorphous structural color materials toward architectural designs. Cell Rep. Phys. Sci. 2, 100499 (2021).

    [58] L. Xu, H. Zheng, F. Xue, Q. Ji, C. Qiu et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 463, 142392 (2023).

    [59] M. Xu, L. Li, W. Zhang, Z. Ren, J. Liu et al., MXene-based soft actuators with multiresponse and diverse applications by a simple method. Macromol. Mater. Eng. 308, 2300200 (2023).

    [60] A. Ahmed, M.M. Hossain, B. Adak, S. Mukhopadhyay, Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296–10320 (2020).

    [61] F. Bian, L. Sun, L. Cai, Y. Wang, Y. Zhao, Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc. Natl. Acad. Sci. U.S.A. 117, 22736–22742 (2020).

    [62] J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019).

    [63] L.P. Hao, A. Hanan, R. Walvekar, M. Khalid, F. Bibi et al., Synergistic integration of MXene and metal-organic frameworks for enhanced electrocatalytic hydrogen evolution in an alkaline environment. Catalysts 13, 802 (2023).

    [64] B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15, 8676–8685 (2021).

    [65] C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable Synthesis of Ti3C2Tx Mxene. Adv. Engin. Mater. 22, 1901241 (2020).

    [66] M. Yu, X. Feng, Scalable manufacturing of MXene films: moving toward industrialization. Matter 3, 335–336 (2020).

    [67] J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020).

    [68] M. Lalegani Dezaki, M. Bodaghi, A review of recent manufacturing technologies for sustainable soft actuators. Int. J. Precis. Eng. Manuf. Green Technol. 10, 1661–1710 (2023).

    [69] A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater. Appl. 5, 61 (2021).

    [70] J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15, 6551–6567 (2022).

    [71] P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023).

    [72] J. Ma, Z. Cui, Y. Du, J. Zhang, C. Sun et al., Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv. Fiber Mater. 4, 1535–1544 (2022).

    [73] J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3, 100908 (2022).

    [74] Y. Hu, L. Yang, Q. Yan, Q. Ji, L. Chang et al., Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 15, 5294–5306 (2021).

    [75] P. Li, N. Su, Z. Wang, J. Qiu, A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811–16818 (2021).

    [76] X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3, 2200102 (2022).

    [77] A. Rozmysłowska-Wojciechowska, A. Szuplewska, T. Wojciechowski, S. Poźniak, J. Mitrzak et al., A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater Sci. Eng. C Mater. Biol. Appl. 111, 110790 (2020).

    [78] S. Iravani, MXenes and MXene-based (nano) structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48, 24144–24156 (2022).

    [79] M. Nie, C. Huang, X. Du, Recent advances in colour-tunable soft actuators. Nanoscale 13, 2780–2791 (2021).

    [80] H. Meng, X. Yang, Y. Wang, C. Wang, W. Ye et al., Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Mater. Today Chem. 24, 100855 (2022).

    [81] G.P. Awasthi, B. Maharjan, S. Shrestha, D.P. Bhattarai, D. Yoon et al., Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf. A Physicochem. Eng. Aspects 586, 124282 (2020).

    [82] Y. Liu, H. Zhou, W. Zhou, S. Meng, C. Qi et al., Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/mxenes electrode and hydrogel electrolyte. Adv. Energy Mater. 11, 2101329 (2021).

    [83] S. Sagadevan, W.-C. Oh, Comprehensive utilization and biomedical application of MXenes: a systematic review of cytotoxicity and biocompatibility. J. Drug Deliv. Sci. Technol. 85, 104569 (2023).

    [84] K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 (2022).

    [85] H. Li, X. Ru, Y. Song, H. Wang, C. Yang et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 227, 109602 (2022).

    [86] A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023).

    [87] S. Wu, H. Luo, W. Shen, J. Su, C. Ma et al., Rapidly NIR-responsive electrospun shape memory actuators with MXene/CNCs hybrids. Mater. Lett. 314, 131922 (2022).

    [88] S. Luo, Z. Wu, J. Zhao, Z. Luo, Q. Qiu et al., ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector. ACS Appl. Mater. Interfaces 14, 19725–19735 (2022).

    [89] M. Wang, W. Liu, X. Shi, Y. Cong, S. Lin et al., Self-powered and low-temperature resistant MXene-modified electronic-skin for multifunctional sensing. Chem. Commun. 57, 8790–8793 (2021).

    [90] Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022).

    [91] H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang et al., Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 184, 114178 (2022).

    [92] H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12, 1325–1338 (2020).

    [93] J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2, 1480–1508 (2021).

    Siavash Iravani, Rajender S. Varma. MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond[J]. Nano-Micro Letters, 2024, 16(1): 142
    Download Citation