• INFRARED
  • Vol. 44, Issue 1, 32 (2023)
Jia-sheng JIN, Cheng-ju MA*, Dong-ming LI, Yao ZHANG, Mi LI, Shi-qian BAO, Ming LIU, Qian-zhen LIU, and Yi-xin ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2023.01.005 Cite this Article
    JIN Jia-sheng, MA Cheng-ju, LI Dong-ming, ZHANG Yao, LI Mi, BAO Shi-qian, LIU Ming, LIU Qian-zhen, ZHANG Yi-xin. Research Progress of Terahertz Slow-Light Effect Based on EIT Metamaterials[J]. INFRARED, 2023, 44(1): 32 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1: 97105.

    [6] Krauss T F. Why do we need slow light[J]. Nature Photonics, 2008, 2: 448-450.

    [7] Settle M D, Engelen R J P, Salib M, et al. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth[J]. Optics Express, 2007, 15(1): 219-226.

    [8] Wang G X, Lu H, Liu X M. Trapping of surface plasmon waves in graded grating waveguide system[J]. Applied physics letters, 2010, 101(1): 013111.

    [9] Sedgwick F G, Pesala B, Lin J Y, et al. THz-bandwidth tunable slow light in semiconductor optical amplifiers[J]. Optics Express, 2007, 15(2): 747-753.

    [10] Cui W, Wang Y X, He Z H, et al. Strong slow-light effect for a hexagonal graphene coupled metasurface in terahertz[J]. Results in Physics, 2021, 26(8): 104356.

    [11] Hu X Z, Zheng D Y, Lin Y S. Actively tunable terahertz metamaterial with singleband and dualband switching characteristic[J]. Applied Physics A, 2020, 126(2): 19.

    [12] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.

    [13] Eisaman M D, André A, Massou F, et al. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature, 2006, 438(7069): 837-841.

    [14] Yahiaoui R, Burrow J A, Mekonen S M, et al. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling[J]. Physical Review B, 2018, 97(15): 155403.

    [15] Devi K M, Sarma A K, Chowdhury D R, et al. Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial[J]. Optics express, 2017, 25(9): 10484-10493.

    [16] Liu X J, Gu J Q, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Applied Physics Letters, 2012, 100(13): 131101.

    [17] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

    [18] Niakan N, Askari M, Zakery A. High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials[J]. Journal of the Optical Society of America B, 2012, 29(9): 2329-2333.

    [19] Sun H, Hu Y Z, Tang Y H, et al. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices[J]. Photonics Research, 2020, 8(3): 263-270.

    [20] Bagcia F, Akaoglu B. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product[J]. Journal of Applied Physics, 2018, 123(17): 173101.

    [21] Chiam S Y, Singh R , Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

    [22] Ma T, Huang Q P, He H C, et al. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range[J]. Optics Express, 2019, 27(12): 16624-16634.

    [24] Zhao Z Y, Zhao H, Ako R T, et al. Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry[J]. Applied Physics Letters, 2020, 117(1): 011105.

    [25] Li Q, Liu S S, Zhang X Q, et al. Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators[J]. Optics Express, 2020, 28(6): 8792-8801.

    [26] Wang Y X, Cui W, Ma H Q, et al. Outstanding slow-light effect for graphene metasurface in terahertz[J]. Results in Physics, 2021, 23: 104022.

    [27] Li C, Li W L, Duan S Y, et al. Electrically tunable electromagnetically induced transparency in superconducting terahertz metamaterials[J]. Applied Physics Letters, 2021, 119(5): 052602.

    [28] Zhou J H, Zhang C X, Liu Q R, et al. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect[J]. Nanophotonics, 2020, 9(9): 2797-2807.

    [29] Hu Y Z, Jiang T, Zhou J H, et al. Ultrafast Terahertz Transmission/Group Delay Switching in Photoactive WSe2-Functionalized Metaphotonic Devices[J]. Nano Energy, 2020, 68: 104280.

    JIN Jia-sheng, MA Cheng-ju, LI Dong-ming, ZHANG Yao, LI Mi, BAO Shi-qian, LIU Ming, LIU Qian-zhen, ZHANG Yi-xin. Research Progress of Terahertz Slow-Light Effect Based on EIT Metamaterials[J]. INFRARED, 2023, 44(1): 32
    Download Citation