• Chinese Journal of Lasers
  • Vol. 49, Issue 20, 2007102 (2022)
Ruijie Yang1, Peng Liu2、*, Xiaoxu Rao1, Bingxuan Wu1, Buyun Guo1, Fan Zhang1, Pengfei Shao1, Chuanjun Chen3, and Xiaorong Xu1、2
Author Affiliations
  • 1Department f Precision Machinery and Precision Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei 230027, Anhui, China
  • 2Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, China
  • 3Oral and Maxillofacial Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
  • show less
    DOI: 10.3788/CJL202249.2007102 Cite this Article Set citation alerts
    Ruijie Yang, Peng Liu, Xiaoxu Rao, Bingxuan Wu, Buyun Guo, Fan Zhang, Pengfei Shao, Chuanjun Chen, Xiaorong Xu. Coaxial Visual Photochromic Marking System for Surgical Telementoring[J]. Chinese Journal of Lasers, 2022, 49(20): 2007102 Copy Citation Text show less
    References

    [1] Meara J G, Leather A J M, Hagander L et al. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development[J]. Lancet, 386, 569-624(2015).

    [2] Weiser T G, Regenbogen S E, Thompson K D et al. An estimation of the global volume of surgery: a modelling strategy based on available data[J]. The Lancet, 372, 139-144(2008).

    [3] Schlachta C M, Nguyen N T, Ponsky T et al. Project 6 summit: SAGES telementoring initiative[J]. Surgical Endoscopy, 30, 3665-3672(2016).

    [4] Singh S, Sharma V, Patel P et al. Telementoring: an overview and our preliminary experience in the setting up of a cost-effective telementoring facility[J]. The Indian Journal of Surgery, 78, 70-73(2016).

    [5] Sebajang H, Trudeau P, Dougall A et al. Telementoring: an important enabling tool for the community surgeon[J]. Surgical Innovation, 12, 327-331(2005).

    [6] Bilgic E, Turkdogan S, Watanabe Y et al. Effectiveness of telementoring in surgery compared with on-site mentoring: a systematic review[J]. Surgical Innovation, 24, 379-385(2017).

    [7] Erridge S, Yeung D K T, Patel H R H et al. Telementoring of surgeons: a systematic review[J]. Surgical Innovation, 26, 95-111(2019).

    [8] Ponsky T A, Bobanga I D, Schwachter M et al. Transcontinental telementoring with pediatric surgeons: proof of concept and technical considerations[J]. Journal of Laparoendoscopic & Advanced Surgical Techniques, 24, 892-896(2014).

    [9] Miller J A, Kwon D S, Dkeidek A et al. Safe introduction of a new surgical technique: remote telementoring for posterior retroperitoneoscopic adrenalectomy[J]. ANZ Journal of Surgery, 82, 813-816(2012).

    [10] El-Sabawi B, Magee W. The evolution of surgical telementoring: current applications and future directions[J]. Annals of Translational Medicine, 4, 391(2016).

    [11] Budrionis A, Augestad K M, Patel H R et al. An evaluation framework for defining the contributions of telestration in surgical telementoring[J]. Interactive Journal of Medical Research, 2, e14(2013).

    [12] Budrionis A, Hartvigsen G, Lindsetmo R O et al. What device should be used for telementoring? Randomized controlled trial[J]. International Journal of Medical Informatics, 84, 715-723(2015).

    [13] Zhu E G, Hadadgar A, Masiello I et al. Augmented reality in healthcare education: an integrative review[J]. PeerJ, 2, e469(2014).

    [14] Shenai M B, Dillavou M, Shum C et al. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance[J]. Neurosurgery, 68, 200-207(2011).

    [15] Andersen D, Popescu V, Cabrera M E et al. Medical telementoring using an augmented reality transparent display[J]. Surgery, 159, 1646-1653(2016).

    [16] Wang S Y, Parsons M, Stone-Mclean J et al. Augmented reality as a telemedicine platform for remote procedural training[J]. Sensors, 17, 2294(2017).

    [17] Ponce B A, Menendez M E, Oladeji L O et al. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices[J]. Orthopedics, 37, 751-757(2014).

    [18] Bui D T, Barnett T, Hoang H T et al. Tele-mentoring using augmented reality technology in healthcare: a systematic review[J]. Australasian Journal of Educational Technology, 81-101(2021).

    [19] Rojas-Muñoz E, Cabrera M E, Andersen D et al. Surgical telementoring without encumbrance: a comparative study of see-through augmented reality-based approaches[J]. Annals of Surgery, 270, 384-389(2019).

    [20] Carbone M, Ferrari V, Marconi M et al. A tele-ultrasonographic platform to collect specialist second opinion in less specialized hospitals[J]. Updates in Surgery, 70, 407-413(2018).

    [21] Zhang F, Zhu X, Gao J et al. Coaxial projective imaging system for surgical navigation and telementoring[J]. Journal of Biomedical Optics, 24, 105002(2019).

    [22] Suter M J, Jillella P A, Vakoc B J et al. Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine[J]. Gastrointestinal Endoscopy, 71, 346-353(2010).

    [23] Suter M J, Gora M J, Lauwers G Y et al. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study[J]. Gastrointestinal Endoscopy, 79, 886-896(2014).

    [24] Liang C P, Dong J, Ford T N et al. Optical coherence tomography-guided laser marking with tethered capsule endomicroscopy in unsedated patients[J]. Biomedical Optics Express, 10, 1207-1222(2019).

    [25] Cardano F, del Canto E, Giordani S. Spiropyrans for light-controlled drug delivery[J]. Dalton Transactions, 48, 15537-15544(2019).

    [26] Klajn R. Spiropyran-based dynamic materials[J]. Chemical Society Reviews, 43, 148-184(2014).

    [27] Fagan A, Bartkowski M, Giordani S. Spiropyran-based drug delivery systems[J]. Frontiers in Chemistry, 9, 720087(2021).

    [28] Movia D, Prina-Mello A, Volkov Y et al. Determination of spiropyran cytotoxicity by high content screening and analysis for safe application in bionanosensing[J]. Chemical Research in Toxicology, 23, 1459-1466(2010).

    [29] Mir M, Ahmed N, Rehman A U. Recent applications of PLGA based nanostructures in drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 159, 217-231(2017).

    [31] Luo M R, Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000[J]. Color Research & Application, 26, 340-350(2001).

    [32] Yang Y[D]. Research of color image quality assessment based on expanded uniform color difference space, 49-50(2013).

    [33] Dehaene S. The neural basis of the Weber-Fechner law: a logarithmic mental number line[J]. Trends in Cognitive Sciences, 7, 145-147(2003).

    [34] Rahman M A, Wang Y. Optimizing intersection-over-union in deep neural networks for image segmentation[M]. Bebis G, Boyle R, Parvin B, et al. Advances in visual computing. Lecture notes in computer science, 10072, 234-244(2016).

    [35] Khiao In M, Richardson K C, Loewa A et al. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin[J]. Anatomia, Histologia, Embryologia, 48, 207-217(2019).

    [36] Butterfield J L, Keyser S P, Dikshit K V et al. Solar freckles: long-term photochromic tattoos for intradermal ultraviolet radiometry[J]. ACS Nano, 14, 13619-13628(2020).

    Ruijie Yang, Peng Liu, Xiaoxu Rao, Bingxuan Wu, Buyun Guo, Fan Zhang, Pengfei Shao, Chuanjun Chen, Xiaorong Xu. Coaxial Visual Photochromic Marking System for Surgical Telementoring[J]. Chinese Journal of Lasers, 2022, 49(20): 2007102
    Download Citation