[1] I. Aprahamian, The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).
[2] C. Cheng, J.F. Stoddart, Wholly synthetic molecular machines. ChemPhysChem 17, 1780–1793 (2016).
[3] M. Schliwa, in Molecular motors. ed.by (Springer Berlin Heidelberg; Berlin, Heidelberg, 2006), pp. 1160–1174.
[6] V. Richards, Molecular machines. Nat. Chem. 8, 1090 (2016).
[36] H. Hess, G. Saper, Engineering with biomolecular motors. Acc. Chem. Res. 51, 3015–3022 (2018).
[44] G. Haberhauer, A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011).
[53] A. Harada, Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001).
[69] R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014).
[73] P.R. McGonigal, J.F. Stoddart, A molecular production line. Nat. Chem. 5, 260–262 (2013).
[75] C.J. Bruns, J.F. Stoddart, Molecular machines muscle up. Nat. Nanotechnol. 8, 9–10 (2013).
[78] J. Howard, The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).
[89] H. Ramezani, H. Dietz, Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).
[92] W. Zhou, R. Saran, J. Liu, Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017).
[95] P.J. Hagerman, Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988).
[185] B.L. Feringa, Vision statement: materials in motion. Adv. Mater. 32, e1906416 (2020).
[203] B. Wang, Y. Lu, Multi-dimensional micro/nanorobots with collective behaviors. SmartMat (2024).
[222] W.H. Fissell, What is nanotechnology? Adv. Chronic Kidney Dis. 20, 452–453 (2013).
[223] A. Kuzuya, S-I M. Nomura, T. Toyota, T. Nakakuki, S. Murata, From molecular robotics to molecular cybernetics: the first step toward chemical artificial intelligence. IEEE Trans. Mol. Biol. Multi Scale Commun. 9, 354–363 (2023).