• Nano-Micro Letters
  • Vol. 16, Issue 1, 155 (2024)
Bin Wang1 and Yuan Lu2,*
Author Affiliations
  • 1Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
  • 2Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01379-4 Cite this Article
    Bin Wang, Yuan Lu. Collective Molecular Machines: Multidimensionality and Reconfigurability[J]. Nano-Micro Letters, 2024, 16(1): 155 Copy Citation Text show less
    References

    [1] I. Aprahamian, The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    [2] C. Cheng, J.F. Stoddart, Wholly synthetic molecular machines. ChemPhysChem 17, 1780–1793 (2016).

    [3] M. Schliwa, in Molecular motors. ed.by (Springer Berlin Heidelberg; Berlin, Heidelberg, 2006), pp. 1160–1174.

    [4] D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot et al., Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2020).

    [5] R.D. Astumian, How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    [6] V. Richards, Molecular machines. Nat. Chem. 8, 1090 (2016).

    [7] B.L. Feringa, The art of building small: from molecular switches to motors (nobel lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    [8] J.-P. Sauvage, From chemical topology to molecular machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    [9] J. Fraser Stoddart, Mechanically interlocked molecules (MIMs)-molecular shuttles, switches, and machines (nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    [10] V. Balzani, M. Gómez-López, J.F. Stoddart, Molecular machines. Acc. Chem. Res. 31, 405–414 (1998).

    [11] S. Erbas-Cakmak, D.A. Leigh, C.T. McTernan, A.L. Nussbaumer, Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    [12] S. Kassem, T. van Leeuwen, A.S. Lubbe, M.R. Wilson, B.L. Feringa et al., Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    [13] Q. Wang, D. Chen, H. Tian, Artificial molecular machines that can perform work. Sci. China Chem. 61, 1261–1273 (2018).

    [14] F. Tanaka, T. Mochizuki, X. Liang, H. Asanuma, S. Tanaka et al., Robust and photocontrollable DNA capsules using azobenzenes. Nano Lett. 10, 3560–3565 (2010).

    [15] Y. Yang, M. Endo, K. Hidaka, H. Sugiyama, Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012).

    [16] Y. Suzuki, M. Endo, Y. Yang, H. Sugiyama, Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. J. Am. Chem. Soc. 136, 1714–1717 (2014).

    [17] M. Endo, R. Miyazaki, T. Emura, K. Hidaka, H. Sugiyama, Transcription regulation system mediated by mechanical operation of a DNA nanostructure. J. Am. Chem. Soc. 134, 2852–2855 (2012).

    [18] H. Saito, T. Kobayashi, T. Hara, Y. Fujita, K. Hayashi et al., Synthetic translational regulation by an L7Ae–kink-turn RNP switch. Nat. Chem. Biol. 6, 71–78 (2010).

    [19] H. Saito, Y. Fujita, S. Kashida, K. Hayashi, T. Inoue, Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2, 160 (2011).

    [20] Y. Yoshimura, K. Fujimoto, Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10, 3227–3230 (2008).

    [21] A.S. Amrutha, K.R. Sunil Kumar, N. Tamaoki, Azobenzene-based photoswitches facilitating reversible regulation of kinesin and myosin motor systems for nanotechnological applications. ChemPhotoChem 3, 337–346 (2019).

    [22] H. Hess, J.L. Ross, Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem. Soc. Rev. 46, 5570–5587 (2017).

    [23] H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger et al., Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat. Mater. 1, 173–177 (2002).

    [24] R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura et al., Hybrid nanotransport system by biomolecular linear motors. J. Microelectromech. Syst. 13, 612–619 (2004).

    [25] K.-Y. Chen, O. Ivashenko, G.T. Carroll, J. Robertus, J.C.M. Kistemaker et al., Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014).

    [26] M. Pollard, M. Lubomska, P. Rudolf, B. Feringa, Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278–1280 (2007).

    [27] G.T. Carroll, M.M. Pollard, R. van Delden, B.L. Feringa, Controlled rotary motion of light-driven molecular motors assembled on a gold film. Chem. Sci. 1, 97–101 (2010).

    [28] G. Xie, P. Li, Z. Zhao, X.-Y. Kong, Z. Zhang et al., Bacteriorhodopsin-inspired light-driven artificial molecule motors for transmembrane mass transportation. Angew. Chem. Int. Ed. 57, 16708–16712 (2018).

    [29] V. García-López, F. Chen, L.G. Nilewski, G. Duret, A. Aliyan et al., Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    [30] S. Chen, Y. Wang, T. Nie, C. Bao, C. Wang et al., An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018).

    [31] J. Wang, B.L. Feringa, Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    [32] C. Biagini, S.D.P. Fielden, D.A. Leigh, F. Schaufelberger, S. Di Stefano et al., Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    [33] E. Kay, D. Leigh, F. Zerbetto, Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    [34] N. Koumura, E.M. Geertsema, A. Meetsma, B.L. Feringa, Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000).

    [35] A.G. Campaña, D.A. Leigh, U. Lewandowska, One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J. Am. Chem. Soc. 135, 8639–8645 (2013).

    [36] H. Hess, G. Saper, Engineering with biomolecular motors. Acc. Chem. Res. 51, 3015–3022 (2018).

    [37] X. Mao, M. Liu, Q. Li, C. Fan, X. Zuo, DNA-based molecular machines. JACS Au 2, 2381–2399 (2022).

    [38] H. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).

    [39] L. Kobr, K. Zhao, Y. Shen, A. Comotti, S. Bracco et al., Inclusion compound based approach to arrays of artificial dipolar molecular rotors. A surface inclusion. J. Am. Chem. Soc. 134, 10122–10131 (2012).

    [40] C. Lemouchi, K. Iliopoulos, L. Zorina, S. Simonov, P. Wzietek et al., Crystalline arrays of pairs of molecular rotors: correlated motion, rotational barriers, and space-inversion symmetry breaking due to conformational mutations. J. Am. Chem. Soc. 135, 9366–9376 (2013).

    [41] X. Jiang, B. Rodríguez-Molina, N. Nazarian, M.A. Garcia-Garibay, Rotation of a bulky triptycene in the solid state: toward engineered nanoscale artificial molecular machines. J. Am. Chem. Soc. 136, 8871–8874 (2014).

    [42] T.R. Kelly, H. De Silva, R.A. Silva, Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    [43] N. Koumura, R.W. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    [44] G. Haberhauer, A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011).

    [45] G. Bringmann, A.J. Price Mortimer, P.A. Keller, M.J. Gresser, J. Garner et al., Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    [46] S.P. Fletcher, F. Dumur, M.M. Pollard, B.L. Feringa, A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    [47] B.J. Dahl, B.P. Branchaud, Synthesis and characterization of a functionalized chiral biaryl capable of exhibiting unidirectional bond rotation. Tetrahedron Lett. 45, 9599–9602 (2004).

    [48] J.C.M. Kistemaker, P. Štacko, J. Visser, B.L. Feringa, Unidirectional rotary motion in achiral molecular motors. Nat. Chem. 7, 890–896 (2015).

    [49] L. Greb, J.-M. Lehn, Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    [50] R.A. van Delden, M.K. ter Wiel, M.M. Pollard, J. Vicario, N. Koumura et al., Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    [51] T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Maciá, N. Katsonis et al., Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    [52] G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch et al., Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc. Natl. Acad. Sci. U.S.A. 104, 9937–9942 (2007).

    [53] A. Harada, Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001).

    [54] V. Ferri, M. Elbing, G. Pace, M. Dickey, M. Zharnikov et al., Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew. Chem. Int. Ed. 47, 3407–3409 (2008).

    [55] G. Yu, C. Han, Z. Zhang, J. Chen, X. Yan et al., Pillar[6]arene-based photoresponsive host–guest complexation. J. Am. Chem. Soc. 134, 8711–8717 (2012).

    [56] C.-L. Lee, T. Liebig, S. Hecht, D. Bléger, J.P. Rabe, Light-induced contraction and extension of single macromolecules on a modified graphite surface. ACS Nano 8, 11987–11993 (2014).

    [57] D.-H. Qu, Q.-C. Wang, H. Tian, A half adder based on a photochemically driven[2]rotaxane. Angew. Chem. Int. Ed. 44, 5296–5299 (2005).

    [58] W.T. Sun, S.L. Huang, H.H. Yao, I.C. Chen, Y.C. Lin et al., An antilock molecular braking system. Org. Lett. 14, 4154–4157 (2012).

    [59] A. Arduini, R. Bussolati, A. Credi, S. Monaco, A. Secchi et al., Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel. Chem 18, 16203–16213 (2012).

    [60] D. Taura, H. Min, C. Katan, E. Yashima, Synthesis of a double-stranded spiroborate helicate bearing stilbene units and its photoresponsive behaviour. New J. Chem. 39, 3259–3269 (2015).

    [61] M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010).

    [62] Z. Li, F. Hu, G. Liu, W. Xue, X. Chen et al., Photo-responsive[2]catenanes: synthesis and properties. Org. Biomol. Chem. 12, 7702–7711 (2014).

    [63] M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    [64] S. Ohshima, M. Morimoto, M. Irie, Light-driven bending of diarylethene mixed crystals. Chem. Sci. 6, 5746–5752 (2015).

    [65] K. Fukushima, A.J. Vandenbos, T. Fujiwara, Spiropyran dimer toward photo-switchable molecular machine. Chem. Mater. 19, 644–646 (2007).

    [66] S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo et al., A simple molecular machine operated by photoinduced proton transfer. J. Am. Chem. Soc. 129, 13378–13379 (2007).

    [67] L.A. Tatum, J.T. Foy, I. Aprahamian, Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. J. Am. Chem. Soc. 136, 17438–17441 (2014).

    [68] L. Sheng, M. Li, S. Zhu, H. Li, G. Xi et al., Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 5, 3044 (2014).

    [69] R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43, 148–184 (2014).

    [70] P.L. Anelli, N. Spencer, J.F. Stoddart, A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    [71] R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    [72] H.-R. Tseng, S.A. Vignon, J.F. Stoddart, Toward chemically controlled nanoscale molecular machinery. Angew. Chem. Int. Ed. 42, 1491–1495 (2003).

    [73] P.R. McGonigal, J.F. Stoddart, A molecular production line. Nat. Chem. 5, 260–262 (2013).

    [74] B. Lewandowski, G. De Bo, J.W. Ward, M. Papmeyer, S. Kuschel et al., Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    [75] C.J. Bruns, J.F. Stoddart, Molecular machines muscle up. Nat. Nanotechnol. 8, 9–10 (2013).

    [76] G. Yu, B.C. Yung, Z. Zhou, Z. Mao, X. Chen, Artificial molecular machines in nanotheranostics. ACS Nano 12, 7–12 (2018).

    [77] G. Saper, H. Hess, Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 288–309 (2020).

    [78] J. Howard, The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).

    [79] M. Nishiyama, H. Higuchi, T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).

    [80] S.A. Burgess, M.L. Walker, H. Sakakibara, P.J. Knight, K. Oiwa, Dynein structure and power stroke. Nature 421, 715–718 (2003).

    [81] A. Gennerich, A.P. Carter, S.L. Reck-Peterson, R.D. Vale, Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    [82] T. Kon, T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima et al., The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012).

    [83] A.J. Roberts, T. Kon, P.J. Knight, K. Sutoh, S.A. Burgess, Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14, 713–726 (2013).

    [84] H. Li, D.J. DeRosier, W.V. Nicholson, E. Nogales, K.H. Downing, Microtubule structure at 8 Å resolution. Structure 10, 1317–1328 (2002).

    [85] W.H. Guilford, D.E. Dupuis, G. Kennedy, J. Wu, J.B. Patlak et al., Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72, 1006–1021 (1997).

    [86] J.A. Spudich, The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2, 387–392 (2001).

    [87] M. Persson, E. Bengtsson, L. ten Siethoff, A. Månsson, Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin. Biophys. J. 105, 1871–1881 (2013).

    [88] E.H.C. Bromley, N.J. Kuwada, M.J. Zuckermann, R. Donadini, L. Samii et al., The Tumbleweed: towards a synthetic protein motor. HFSP J. 3, 204–212 (2009).

    [89] H. Ramezani, H. Dietz, Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

    [90] A.M.R. Kabir, D. Inoue, A. Kakugo, Molecular swarm robots: recent progress and future challenges. Sci. Technol. Adv. Mater. 21, 323–332 (2020).

    [91] B. Yurke, A.J. Turberfield, A.P. Mills Jr., F.C. Simmel, J.L. Neumann, A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    [92] W. Zhou, R. Saran, J. Liu, Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017).

    [93] Y. Tian, Y. He, Y. Chen, P. Yin, C. Mao, A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    [94] H.-M. Chuang, J.G. Reifenberger, H. Cao, K.D. Dorfman, Sequence-dependent persistence length of long DNA. Phys. Rev. Lett. 119, 227802 (2017).

    [95] P.J. Hagerman, Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988).

    [96] Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    [97] A. Krissanaprasit, C.M. Key, S. Pontula, T.H. LaBean, Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev. 121, 13797–13868 (2021).

    [98] J. Li, A.A. Green, H. Yan, C. Fan, Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).

    [99] D. Han, C. Wu, M. You, T. Zhang, S. Wan et al., A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 835–841 (2015).

    [100] R. Peng, L. Xu, H. Wang, Y. Lyu, D. Wang et al., DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 (2020).

    [101] D. Fan, E. Wang, S. Dong, Upconversion-chameleon-driven DNA computing: the DNA-unlocked inner-filter-effect (DU-IFE) for operating a multicolor upconversion luminescent DNA logic library and Its biosensing application. Mater. Horiz. 6, 375–384 (2019).

    [102] F. Wang, H. Lv, Q. Li, J. Li, X. Zhang et al., Implementing digital computing with DNA-based switching circuits. Nat. Commun. 11, 121 (2020).

    [103] S.F.J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka et al., A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012).

    [104] G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips, G. Seelig, A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017).

    [105] J. Pan, F. Li, T.-G. Cha, H. Chen, J.H. Choi, Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34, 56–64 (2015).

    [106] W. Meng, R.A. Muscat, M.L. McKee, P.J. Milnes, A.H. El-Sagheer et al., An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8, 542–548 (2016).

    [107] D. Zhao, T.M. Neubauer, B.L. Feringa, Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    [108] S. Kassem, A.T.L. Lee, D.A. Leigh, A. Markevicius, J. Solà, Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016).

    [109] Y. He, D.R. Liu, Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5, 778–782 (2010).

    [110] H. Gu, J. Chao, S.-J. Xiao, N.C. Seeman, A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    [111] T. Funck, F. Nicoli, A. Kuzyk, T. Liedl, Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem. Int. Ed. 57, 13495–13498 (2018).

    [112] S.M. Douglas, I. Bachelet, G.M. Church, A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    [113] C. Zhou, X. Duan, N. Liu, A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015).

    [114] A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl et al., Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    [115] F. Lancia, A. Ryabchun, N. Katsonis, Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).

    [116] Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong et al., Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioact. Mater. 6, 1375–1387 (2020).

    [117] S. Krause, B.L. Feringa, Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020).

    [118] K.C.-F. Leung, C.-P. Chak, C.-M. Lo, W.-Y. Wong, S. Xuan et al., pH-controllable supramolecular systems. Chem 4, 364–381 (2009).

    [119] S.M. Landge, I. Aprahamian, A pH activated configurational rotary switch: controlling the E/Z isomerization in hydrazones. J. Am. Chem. Soc. 131, 18269–18271 (2009).

    [120] S. Angelos, N.M. Khashab, Y.-W. Yang, A. Trabolsi, H.A. Khatib et al., pH clock-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 12912–12914 (2009).

    [121] Z. Meng, Y. Han, L.-N. Wang, J.-F. Xiang, S.-G. He et al., Stepwise motion in a multivalent[2](3)catenane. J. Am. Chem. Soc. 137, 9739–9745 (2015).

    [122] S. Corra, M. Curcio, M. Baroncini, S. Silvi, A. Credi, Photoactivated artificial molecular machines that can perform tasks. Adv. Mater. 32, e1906064 (2020).

    [123] V. Balzani, M. Clemente-León, A. Credi, B. Ferrer, M. Venturi et al., Autonomous artificial nanomotor powered by sunlight. PNAS 103, 1178–1183 (2006).

    [124] F. Ji, Y. Wu, M. Pumera, L. Zhang, Collective behaviors of active matter learning from natural Taxes across scales. Adv. Mater. 35, 2203959 (2023).

    [125] S.J. Wezenberg, C.M. Croisetu, M.C.A. Stuart, B.L. Feringa, Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341–4346 (2016).

    [126] Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso et al., Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    [127] J.T. Foy, Q. Li, A. Goujon, J.-R. Colard-Itté, G. Fuks et al., Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    [128] A. Goujon, G. Du, E. Moulin, G. Fuks, M. Maaloum et al., Hierarchical self-assembly of supramolecular muscle-like fibers. Angew. Chem. Int. Ed. 55, 703–707 (2016).

    [129] W.-J. Li, W. Wang, X.-Q. Wang, M. Li, Y. Ke et al., Daisy chain dendrimers: integrated mechanically interlocked molecules with stimuli-induced dimension modulation feature. J. Am. Chem. Soc. 142, 8473–8482 (2020).

    [130] J. Hou, A. Mondal, G. Long, L. de Haan, W. Zhao et al., Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network. Angew. Chem. Int. Ed. 60, 8251–8257 (2021).

    [131] J. Choi, J. Jeon, J. Lee, A. Nauman, J.G. Lee et al., Steerable and agile light-fueled rolling locomotors by curvature-engineered torsional torque. Adv. Sci. 10(30), 2304715 (2023).

    [132] Z.-T. Shi, Q. Zhang, H. Tian, D.-H. Qu, Driving smart molecular systems by artificial molecular machines. Adv. Intell. Syst. 2, 1900169 (2020).

    [133] L. Fang, M. Hmadeh, J. Wu, M.A. Olson, J.M. Spruell et al., Acid−base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131(20), 7126–7134 (2009).

    [134] P.G. Clark, M.W. Day, R.H. Grubbs, Switching and extension of a[c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009).

    [135] G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    [136] L. Gao, Z. Zhang, B. Zheng, F. Huang, Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based[c2]daisy chain. Polym. Chem. 5, 5734–5739 (2014).

    [137] Q. Zhang, S.-J. Rao, T. Xie, X. Li, T.-Y. Xu et al., Muscle-like artificial molecular actuators for nanoparticles. Chem 4, 2670–2684 (2018).

    [138] A. Goujon, T. Lang, G. Mariani, E. Moulin, G. Fuks et al., Bistable[c2]daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139, 14825–14828 (2017).

    [139] J.-C. Chang, S.-H. Tseng, C.-C. Lai, Y.-H. Liu, S.-M. Peng et al., Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles. Nat. Chem. 9, 128–134 (2017).

    [140] X. Yang, L. Cheng, Z. Zhang, J. Zhao, R. Bai et al., Amplification of integrated microscopic motions of high-density[2]rotaxanes in mechanically interlocked networks. Nat. Commun. 13, 6654 (2022).

    [141] W.-J. Li, W.-T. Xu, X.-Q. Wang, Y. Jiang, Y. Zhu et al., Photoresponsive rotaxane-branched dendrimers: from nanoscale dimension modulation to macroscopic soft actuators. J. Am. Chem. Soc. 145(26), 14498–14509 (2023).

    [142] R. Eelkema, B.L. Feringa, Amplification of chirality in liquid crystals. Org. Biomol. Chem. 4, 3729 (2006).

    [143] F. Lancia, A. Ryabchun, A.-D. Nguindjel, S. Kwangmettatam, N. Katsonis, Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 10, 4819 (2019).

    [144] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307–310 (2004).

    [145] R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon et al., Nanomotor rotates microscale objects. Nature 440, 163 (2006).

    [146] S. Iamsaard, S.J. Aßhoff, B. Matt, T. Kudernac, J.J.L.M. Cornelissen et al., Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    [147] S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softmicrorobots. Nat. Mater. 15, 647–653 (2016).

    [148] A.H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme et al., Making waves in a photoactive polymer film. Nature 546, 632–636 (2017).

    [149] J. Chen, F.K. Leung, M.C.A. Stuart, T. Kajitani, T. Fukushima et al., Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    [150] A. Kakugo, S. Sugimoto, J.P. Gong, Y. Osada, Gel machines constructed from chemically cross-linked actins and myosins. Adv. Mater. 14, 1124 (2002).

    [151] A. Kakugo, S. Sugimoto, K. Shikinaka, J.P. Gong, Y. Osada, Characteristics of chemically cross-linked myosin gels. J. Biomater. Sci. Polym. Ed. 16, 203–218 (2005).

    [152] K. Shikinaka, S. Takaoka, A. Kakugo, Y. Osada, J.P. Gong, ATP-fueled soft gel machine with well-oriented structure constructed using actin-myosin system. J. Appl. Polym. Sci. 114, 2087–2092 (2009).

    [153] H. Jia, J. Flommersfeld, M. Heymann, S.K. Vogel, H.G. Franquelim et al., 3D printed protein-based robotic structures actuated by molecular motor assemblies. Nat. Mater. 21, 703–709 (2022).

    [154] T. Nitta, Y. Wang, Z. Du, K. Morishima, Y. Hiratsuka, A printable active network actuator built from an engineered biomolecular motor. Nat. Mater. 20, 1149–1155 (2021).

    [155] Y. Wang, T. Nitta, Y. Hiratsuka, K. Morishima, In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci. Robot. 7, eaba8212 (2022).

    [156] K. Yoshida, K. Kohno, Y. Hiratsuka, H. Onoe, Macroscale collagen-actomyosin hybrid actuator built from bioderived materials. Adv. Funct. Mater. 33, 2307766 (2023).

    [157] J. Zhang, B. Gao, B. Ye, Z. Sun, Z. Qian et al., Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35, e2208571 (2023).

    [158] W. Danowski, T. van Leeuwen, S. Abdolahzadeh, D. Roke, W.R. Browne et al., Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    [159] S. Tsitkov, Y. Song, J.B. Rodriguez 3rd., Y. Zhang, H. Hess, Kinesin-recruiting microtubules exhibit collective gliding motion while forming motor trails. ACS Nano 14, 16547–16557 (2020).

    [160] S. Araki, K. Beppu, A.M.R. Kabir, A. Kakugo, Y.T. Maeda, Controlling collective motion of kinesin-driven microtubules via patterning of topographic landscapes. Nano Lett. 21, 10478–10485 (2021).

    [161] H. Inaba, Y. Sueki, M. Ichikawa, A.M.R. Kabir, T. Iwasaki et al., Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci. Adv. 8, eabq3817 (2022).

    [162] F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi et al., Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    [163] V. Schaller, C.A. Weber, B. Hammerich, E. Frey, A.R. Bausch, Frozen steady states in active systems. Proc. Natl. Acad. Sci. U.S.A. 108, 19183–19188 (2011).

    [164] L. Huber, R. Suzuki, T. Krüger, E. Frey, A.R. Bausch, Emergence of coexisting ordered states in active matter systems. Science 361, 255–258 (2018).

    [165] J.J. Keya, R. Suzuki, A.M.R. Kabir, D. Inoue, H. Asanuma et al., DNA-assisted swarm control in a biomolecular motor system. Nat. Commun. 9, 453 (2018).

    [166] J.J. Keya, A.M.R. Kabir, D. Inoue, K. Sada, H. Hess et al., Control of swarming of molecular robots. Sci. Rep. 8, 11756 (2018).

    [167] H. Hess, J. Clemmens, C. Brunner, R. Doot, S. Luna et al., Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett. 5, 629–633 (2005).

    [168] M.S. Islam, K. Kuribayashi-Shigetomi, A.M.R. Kabir, D. Inoue, K. Sada et al., Role of confinement in the active self-organization of kinesin-driven microtubules. Sens. Actuat. B Chem. 247, 53–60 (2017).

    [169] O. Idan, A. Lam, J. Kamcev, J. Gonzales, A. Agarwal et al., Nanoscale transport enables active self-assembly of millimeter-scale wires. Nano Lett. 12, 240–245 (2012).

    [170] A. Saito, T.I. Farhana, A.M.R. Kabir, D. Inoue, A. Konagaya et al., Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv. 7, 13191–13197 (2017).

    [171] D. Inoue, B. Mahmot, A.M.R. Kabir, T.I. Farhana, K. Tokuraku et al., Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale 7, 18054–18061 (2015).

    [172] Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa et al., Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012).

    [173] T. Sanchez, D. Welch, D. Nicastro, Z. Dogic, Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011).

    [174] P. Bieling, I.A. Telley, J. Piehler, T. Surrey, Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep. 9, 1121–1127 (2008).

    [175] G. Saper, S. Tsitkov, P. Katira, H. Hess, Robotic end-to-end fusion of microtubules powered by kinesin. Sci. Robot. 6, eabj7200 (2021).

    [176] A.J. Thubagere, W. Li, R.F. Johnson, Z. Chen, S. Doroudi et al., A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    [177] M. Akter, J.J. Keya, A.M.R. Kabir, H. Asanuma, K. Murayama et al., Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem. Commun. 56, 7953–7956 (2020).

    [178] M. Akter, J.J. Keya, K. Kayano, A.M.R. Kabir, D. Inoue et al., Cooperative cargo transportation by a swarm of molecular machines. Sci. Robot. 7, eabm0677 (2022).

    [179] Y. Sato, Y. Hiratsuka, I. Kawamata, S. Murata, S.-I.M. Nomura, Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2, eaal3735 (2017).

    [180] K. Matsuda, A.M.R. Kabir, N. Akamatsu, A. Saito, S. Ishikawa et al., Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 19, 3933–3938 (2019).

    [181] S. Ishii, M. Akter, K. Murayama, A.M.R. Kabir, H. Asanuma et al., Kinesin motors driven microtubule swarming triggered by UV light. Polym. J. 54, 1501–1507 (2022).

    [182] A. Senoussi, J.-C. Galas, A. Estevez-Torres, Programmed mechano-chemical coupling in reaction-diffusion active matter. Sci. Adv. 7, eabi9865 (2021).

    [183] R. Ibusuki, T. Morishita, A. Furuta, S. Nakayama, M. Yoshio et al., Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022).

    [184] Z. Liu, W. Zhou, C. Qi, T. Kong, Interface engineering in multiphase systems toward synthetic cells and organelles: from soft matter fundamentals to biomedical applications. Adv. Mater. 32, e2002932 (2020).

    [185] B.L. Feringa, Vision statement: materials in motion. Adv. Mater. 32, e1906416 (2020).

    [186] Y. Zhang, K. Yan, F. Ji, L. Zhang, Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv. Funct. Mater. 28, 1806340 (2018).

    [187] D. Wang, G. Zhao, C.H. Chen, H. Zhang, R.M. Duan et al., One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir 35(7), 2801–2807 (2019).

    [188] R. Das, V.S. Sypu, H.K. Paumo, M. Bhaumik, V. Maharaj et al., Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B Environ. 244, 546–558 (2019).

    [189] H. Park, A. May, L. Portilla, H. Dietrich, F. Münch et al., Magnetite nanoparticles as efficient materials for removal of glyphosate from water. Nat. Sustain. 3, 129–135 (2020).

    [190] Y. Ren, H. Li, J. Liu, M. Zhou, J. Pan, Crescent-shaped micromotor sorbents with sulfonic acid functionalized convex surface: the synthesis by A Janus emulsion strategy and adsorption for Li+. J. Hazard. Mater. 422, 126870 (2022).

    [191] Z.C. Chen, J.W. Jiang, X. Wang, H. Zhang, B. Song et al., Visible light-regulated bivo4-based micromotor with biomimetic “predator-bait” behavior. J. Mater. Sci. 57(6), 4092–4103 (2022).

    [192] Y. Ji, X. Lin, Z. Wu, Y. Wu, W. Gao et al., Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angew. Chem. Int. Ed. 58, 12200–12205 (2019).

    [193] J. Yu, L. Yang, L. Zhang, Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int. J. Robot. Res. 37, 912–930 (2018).

    [194] Q. Wang, L. Yang, B. Wang, E. Yu, J. Yu et al., Collective behavior of reconfigurable magnetic droplets via dynamic self-assembly. ACS Appl. Mater. Interfaces 11, 1630–1637 (2019).

    [195] T. Bhuyan, A.K. Singh, D. Dutta, A. Unal, S.S. Ghosh et al., Magnetic field guided chemotaxis of iMushbots for targeted anticancer therapeutics. ACS Biomater. Sci. Eng. 3, 1627–1640 (2017).

    [196] D. Liu, R. Guo, S. Mao, Y. Huang, B. Wang et al., 3D magnetic field guided sunflower-like nanocatalytic active swarm targeting patients-derived organoids. Nano Res. 16, 1021–1032 (2023).

    [197] H. Lee, D.-I. Kim, S.-H. Kwon, S. Park, Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability. ACS Appl. Mater. Interfaces 13, 19633–19647 (2021).

    [198] S. Jeon, B.C. Park, S. Lim, H.Y. Yoon, Y.S. Jeon et al., Heat-generating iron oxide multigranule nanoclusters for enhancing hyperthermic efficacy in tumor treatment. ACS Appl. Mater. Interfaces 12, 33483–33491 (2020).

    [199] A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015).

    [200] Q. Wang, X. Du, D. Jin, L. Zhang, Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16, 604–616 (2022).

    [201] L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14, 2880–2893 (2020).

    [202] X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    [203] B. Wang, Y. Lu, Multi-dimensional micro/nanorobots with collective behaviors. SmartMat (2024).

    [204] D. Jin, J. Yu, K. Yuan, L. Zhang, Mimicking the structure and function of ant bridges in a reconfigurable microswarm for electronic applications. ACS Nano 13, 5999–6007 (2019).

    [205] F. Ji, D. Jin, B. Wang, L. Zhang, Light-driven hovering of a magnetic microswarm in fluid. ACS Nano 14, 6990–6998 (2020).

    [206] F. Mou, X. Li, Q. Xie, J. Zhang, K. Xiong et al., Active micromotor systems built from passive particles with biomimetic predator-prey interactions. ACS Nano 14, 406–414 (2020).

    [207] S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396–401 (2012).

    [208] C. Liang, C. Zhan, F. Zeng, D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10, 35099–35107 (2018).

    [209] Y. Huang, D. Liu, R. Guo, B. Wang, Z. Liu et al., Magnetic-controlled dandelion-like nanocatalytic swarm for targeted biofilm elimination. Nanoscale 14, 6497–6506 (2022).

    [210] M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4, 4845–4851 (2010).

    [211] W. Duan, R. Liu, A. Sen, Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135, 1280–1283 (2013).

    [212] M. Ibele, T.E. Mallouk, A. Sen, Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48, 3308–3312 (2009).

    [213] S. Du, H. Wang, C. Zhou, W. Wang, Z. Zhang, Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes. J. Am. Chem. Soc. 142, 2213–2217 (2020).

    [214] C. Chen, F. Mou, L. Xu, S. Wang, J. Guan et al., Light-steered isotropic semiconductor micromotors. Adv. Mater. 29, 1603374 (2017).

    [215] K. Bian, X. Zhang, K. Liu, T. Yin, H. Liu et al., Peptide-directed hierarchical mineralized silver nanocages for anti-tumor photothermal therapy. ACS Sustain. Chem. Eng. 6, 7574–7588 (2018).

    [216] Y. Hu, W. Liu, Y. Sun, Multiwavelength phototactic micromotor with controllable swarming motion for “chemistry-on-the-fly.” ACS Appl. Mater. Interfaces 12, 41495–41505 (2020).

    [217] Z. Lin, X. Fan, M. Sun, C. Gao, Q. He et al., Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano 12, 2539–2545 (2018).

    [218] F. Soto, A. Martin, S. Ibsen, M. Vaidyanathan, V. Garcia-Gradilla et al., Acoustic microcannons: toward advanced microballistics. ACS Nano 10, 1522–1528 (2016).

    [219] W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012).

    [220] H. Inaba, M. Yamada, M.R. Rashid, A.M.R. Kabir, A. Kakugo et al., Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanoparticles using a tau-derived peptide. Nano Lett. 20, 5251–5258 (2020).

    [221] H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen et al., Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4, eaav8006 (2019).

    [222] W.H. Fissell, What is nanotechnology? Adv. Chronic Kidney Dis. 20, 452–453 (2013).

    [223] A. Kuzuya, S-I M. Nomura, T. Toyota, T. Nakakuki, S. Murata, From molecular robotics to molecular cybernetics: the first step toward chemical artificial intelligence. IEEE Trans. Mol. Biol. Multi Scale Commun. 9, 354–363 (2023).

    Bin Wang, Yuan Lu. Collective Molecular Machines: Multidimensionality and Reconfigurability[J]. Nano-Micro Letters, 2024, 16(1): 155
    Download Citation