• High Power Laser and Particle Beams
  • Vol. 33, Issue 5, 055001 (2021)
Mingxian Kan, Ganghua Wang, Lixin Liu, Xiaolong Nan, Ce Ji, Yong He, and Shuchao Duan
Author Affiliations
  • Institute of Fluid Physics, CAEP, P. O. Box 919-111, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202133.200329 Cite this Article
    Mingxian Kan, Ganghua Wang, Lixin Liu, Xiaolong Nan, Ce Ji, Yong He, Shuchao Duan. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33(5): 055001 Copy Citation Text show less
    References

    [1] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 94, 4420-4431(2003).

    [2] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 98, 073530(2005).

    [3] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 87, 225501(2001).

    [4] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 90, 035505(2003).

    [5] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 69, 144209(2004).

    [6] Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 25, 671-694(2009).

    [7] Reisman D B, Toor A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 89, 1625-1633(2001).

    [8] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 10, 1092-1099(2003).

    [9] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 38, 480-485(2011).

    [10] Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. J Appl Phys, 116, 204903(2014).

    [11] Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 26, 38-43(2018).

    [13] Deng Jianjun, Xie Weiping, Feng Shuping, et al. Initial performance of the primary test stand[J]. IEEE Transactions on Plasma Science, 41, 2580-2583(2013).

    [14] Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM[J]. Matter and Radiation at Extremes, 1, 135-152(2016).

    CLP Journals

    [1] Mingxian Kan, Yuesong Jia, Nanchuan Zhang, Zhen Fu, Zhengwei Zhang. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35(2): 025003

    Mingxian Kan, Ganghua Wang, Lixin Liu, Xiaolong Nan, Ce Ji, Yong He, Shuchao Duan. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33(5): 055001
    Download Citation