• Photonics Research
  • Vol. 4, Issue 4, 0146 (2016)
Ximin Tian and Zhi-Yuan Li*
Author Affiliations
  • Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Science, P.O. Box 603, Beijing 100190, China
  • show less
    DOI: 10.1364/prj.4.000146 Cite this Article Set citation alerts
    Ximin Tian, Zhi-Yuan Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 2016, 4(4): 0146 Copy Citation Text show less
    References

    [1] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [2] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Lett., 14, 3510-3514(2014).

    [3] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [4] Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, S. He. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon. Rev., 8, 495-520(2014).

    [5] X. Lu, R. Wan, T. Zhang. Metal-dielectric-metal based narrow band absorber for sensing applications. Opt. Express, 23, 29842-29847(2015).

    [6] Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, S. Pan. Plasmonic induced triple-band absorber for sensor application. Opt. Express, 23, 17607-17612(2015).

    [7] K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, J. Zhou. A large‐area, mushroom‐capped plasmonic perfect absorber: refractive index sensing and Fabry-Perot cavity mechanism. Adv. Opt. Mater., 3, 1779-1786(2015).

    [8] D. R. Smith, J. B. Pendry, M. C. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [9] V. M. Shalaev. Optical negative-index metamaterials. Nat. photonics, 1, 41-48(2007).

    [10] N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater., 7, 31-37(2008).

    [11] N. Liu, H. Liu, S. Zhu, H. Giessen. Stereometamaterials. Nat. Photonics, 3, 157-162(2009).

    [12] E. Plum, V. Fedotov, P. Kuo, D. Tsai, N. Zheludev. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt. Express, 17, 8548-8551(2009).

    [13] T. Cao, C.-W. Wei, R. E. Simpson, L. Zhang, M. J. Cryan. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep., 4, 3955(2014).

    [14] X.-J. He, Y. Wang, J. Wang, T. Gui, Q. Wu. Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle. Prog. Electromagn. Res., 115, 381-397(2011).

    [15] H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, R. Averitt. A dual band terahertz metamaterial absorber. J. Phys. D, 43, 225102(2010).

    [16] Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. Cumming. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett., 36, 945-947(2011).

    [17] J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, Y. Lee. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express, 21, 9691-9702(2013).

    [18] S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, C. Zhang. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Opt. Express, 23, 3523-3533(2015).

    [19] Y. Cheng, Y. Nie, R. Gong. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Opt. Laser Technol., 48, 415-421(2013).

    [20] Y. Q. Ye, Y. Jin, S. He. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am B, 27, 498-504(2010).

    [21] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [22] J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. Cumming. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett., 36, 3476-3478(2011).

    [23] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 107, 045901(2011).

    [24] H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan. Rainbow trapping in hyperbolic metamaterial waveguide. CLEO: QELS_Fundamental Science, QTu2A. 4(2013).

    [25] H.-M. Lee, J.-C. Wu. Temperature controlled perfect absorber based on metal-superconductor-metal square array. IEEE Trans. Magn., 48, 4243-4246(2012).

    [26] D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, S. Elliott. Breaking the speed limits of phase-change memory. Science, 336, 1566-1569(2012).

    [27] A. Redaelli, A. Pirovano, A. Benvenuti, A. Lacaita. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys., 103, 111101(2008).

    [28] V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys., 89, 3168-3176(2001).

    [29] T. Cao, C. Wei, R. E. Simpson, L. Zhang, M. J. Cryan. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express, 3, 1101-1110(2013).

    [30] K. Makino, J. Tominaga, M. Hase. Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials. Opt. Express, 19, 1260-1270(2011).

    [31] G. Dayal, S. A. Ramakrishna. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J. Opt., 15, 055106(2013).

    [32] J. Van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 21, 26285-26302(2013).

    [33] L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, C. Fumeaux. Efficiency and scalability of dielectric resonator antennas at optical frequencies. IEEE Photon. J., 6, 1-7(2014).

    [34] T. Cao, L. Zhang, R. E. Simpson, M. J. Cryan. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J. Opt. Soc. Am. B, 30, 1580-1585(2013).

    [35] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [36] B.-S. Lee, S. G. Bishop. Optical and electrical properties of phase change materials. Phase Change Materials, 175-198(2009).

    [37] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [38] Y. Chen, T. Kao, B. Ng, X. Li, X. Luo, B. Luk’yanchuk, S. Maier, M. Hong. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express, 21, 13691-13698(2013).

    [39] X. Chen, Y. Chen, M. Yan, M. Qiu. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano, 6, 2550-2557(2012).

    [40] B. Lee, Z. Zhang. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. J. Appl. Phys., 100, 063529(2006).

    [41] W. Zhou, K. Li, C. Song, P. Hao, M. Chi, M. Yu, Y. Wu. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Opt. Express, 23, A413-A418(2015).

    [42] G. Chen, P. Hui. Thermal conductivities of evaporated gold films on silicon and glass. Appl. Phys. Lett., 74, 2942-2944(1999).

    [43] M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, T. Baba. Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon. Microelectron. Eng., 84, 1792-1796(2007).

    Ximin Tian, Zhi-Yuan Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 2016, 4(4): 0146
    Download Citation