[1] PEI Minjie, QI Dalong, QI Yingpeng et al. Ultrafast electron diffraction technique and its applications[J]. Acta Physica Sinica, 64, 034101(2015).
[2] Sciaini G, Miller R J D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics[J]. Reports on Progress in Physics, 74, 096101(2011).
[3] LIANG Wenxi, ZHU Pengfei, WANG Xuan et al. Ultrafast dynamics of thin-film aluminum observed by ultrafast electron diffraction[J]. Acta Physica Sinica, 58, 5546-5551(2009).
[4] Li R K, Tang C X, Du Y C et al. Experimental demonstration of high quality MeV ultrafast electron diffraction[J]. Review of Scientific Instruments, 80, 083303(2009).
[5] Fu F C, Wang R, Zhu P F et al. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures[J]. Physical Review Letters, 114, 114801(2015).
[6] Kim H W, Vinokurov N A, Baek I H et al. Towards jitter-free ultrafast electron diffraction technology[J]. Nature Photonics, 14, 245-249(2020).
[7] He A, Willeke F, Yu L H et al. Design of low energy bunch compressors with space charge effects[J]. Physical Review Special Topics - Accelerators and Beams, 18, 014201(2015).
[8] Qi F F, Ma Z R, Zhao L R et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 124, 134803(2020).
[9] Faure J, Glinec Y, Pukhov A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).
[10] Debus A D, Bussmann M, Schramm U et al. Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry[J]. Physical Review Letters, 104, 084802(2010).
[11] He Z H, Thomas A G R, Beaurepaire B et al. Electron diffraction using ultrafast electron bunches from a laser-Wakefield accelerator at kHz repetition rate[J]. Applied Physics Letters, 102, 064104(2013).
[12] Wang X M, Zgadzaj R, Fazel N et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 4, 1988(2013).
[13] Antipov S, Baturin S, Jing C et al. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure[J]. Physical Review Letters, 112, 114801(2014).
[14] Shpakov V, Anania M P, Bellaveglia M et al. Longitudinal phase-space manipulation with beam-driven plasma wakefields[J]. Physical Review Letters, 122, 114801(2019).
[15] Wu Y P, Hua J F, Zhou Z et al. Phase space dynamics of a plasma Wakefield dechirper for energy spread reduction[J]. Physical Review Letters, 122, 204804(2019).
[16] Tokita S, Hashida M, Inoue S et al. Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression[J]. Physical Review Letters, 105, 215004(2010).
[17] Faure J, van der Geer B, Beaurepaire B et al. Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction[J]. Physical Review Accelerators and Beams, 19, 021302(2016).
[18] Lundh O, Lim J, Rechatin C et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator[J]. Nature Physics, 7, 219-222(2011).
[19] Faure J, Rechatin C, Norlin A et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 444, 737-739(2006).
[20] Ghaith A, Oumbarek D, Kitégi C et al. Permanent magnet-based quadrupoles for plasma acceleration sources[J]. Instruments, 3, 27(2019).
[21] Zhu J G, Wu M J, Liao Q et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 22, 061302(2019).