• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 2, 020201 (2023)
Jungao ZHU1, Haiyang LU3,*, Yuan ZHAO3, Meifu LAI3..., Yongli GU3, Shixiang XU2,**, Meng WEN4 and Cangtao ZHOU3,***|Show fewer author(s)
Author Affiliations
  • 1College of Applied Sciences, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Lab of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • 4Department of Physics, Hubei University, Wuhan 430062, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.020201 Cite this Article
    Jungao ZHU, Haiyang LU, Yuan ZHAO, Meifu LAI, Yongli GU, Shixiang XU, Meng WEN, Cangtao ZHOU. Study of achromatic beamline design for laser-driven femtosecond electron beams[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020201 Copy Citation Text show less
    References

    [1] PEI Minjie, QI Dalong, QI Yingpeng et al. Ultrafast electron diffraction technique and its applications[J]. Acta Physica Sinica, 64, 034101(2015).

    [2] Sciaini G, Miller R J D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics[J]. Reports on Progress in Physics, 74, 096101(2011).

    [3] LIANG Wenxi, ZHU Pengfei, WANG Xuan et al. Ultrafast dynamics of thin-film aluminum observed by ultrafast electron diffraction[J]. Acta Physica Sinica, 58, 5546-5551(2009).

    [4] Li R K, Tang C X, Du Y C et al. Experimental demonstration of high quality MeV ultrafast electron diffraction[J]. Review of Scientific Instruments, 80, 083303(2009).

    [5] Fu F C, Wang R, Zhu P F et al. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures[J]. Physical Review Letters, 114, 114801(2015).

    [6] Kim H W, Vinokurov N A, Baek I H et al. Towards jitter-free ultrafast electron diffraction technology[J]. Nature Photonics, 14, 245-249(2020).

    [7] He A, Willeke F, Yu L H et al. Design of low energy bunch compressors with space charge effects[J]. Physical Review Special Topics - Accelerators and Beams, 18, 014201(2015).

    [8] Qi F F, Ma Z R, Zhao L R et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 124, 134803(2020).

    [9] Faure J, Glinec Y, Pukhov A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [10] Debus A D, Bussmann M, Schramm U et al. Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry[J]. Physical Review Letters, 104, 084802(2010).

    [11] He Z H, Thomas A G R, Beaurepaire B et al. Electron diffraction using ultrafast electron bunches from a laser-Wakefield accelerator at kHz repetition rate[J]. Applied Physics Letters, 102, 064104(2013).

    [12] Wang X M, Zgadzaj R, Fazel N et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 4, 1988(2013).

    [13] Antipov S, Baturin S, Jing C et al. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure[J]. Physical Review Letters, 112, 114801(2014).

    [14] Shpakov V, Anania M P, Bellaveglia M et al. Longitudinal phase-space manipulation with beam-driven plasma wakefields[J]. Physical Review Letters, 122, 114801(2019).

    [15] Wu Y P, Hua J F, Zhou Z et al. Phase space dynamics of a plasma Wakefield dechirper for energy spread reduction[J]. Physical Review Letters, 122, 204804(2019).

    [16] Tokita S, Hashida M, Inoue S et al. Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression[J]. Physical Review Letters, 105, 215004(2010).

    [17] Faure J, van der Geer B, Beaurepaire B et al. Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction[J]. Physical Review Accelerators and Beams, 19, 021302(2016).

    [18] Lundh O, Lim J, Rechatin C et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator[J]. Nature Physics, 7, 219-222(2011).

    [19] Faure J, Rechatin C, Norlin A et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 444, 737-739(2006).

    [20] Ghaith A, Oumbarek D, Kitégi C et al. Permanent magnet-based quadrupoles for plasma acceleration sources[J]. Instruments, 3, 27(2019).

    [21] Zhu J G, Wu M J, Liao Q et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 22, 061302(2019).

    Jungao ZHU, Haiyang LU, Yuan ZHAO, Meifu LAI, Yongli GU, Shixiang XU, Meng WEN, Cangtao ZHOU. Study of achromatic beamline design for laser-driven femtosecond electron beams[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020201
    Download Citation