• Photonics Research
  • Vol. 12, Issue 7, 1449 (2024)
Kun Xue1,†, Heng Wei2,4,†,*, Cilei Zhang1..., Yonghao Zhang1, Haoliang Sun3 and Shaohua Dong1,5,*|Show fewer author(s)
Author Affiliations
  • 1Peng Cheng Laboratory, Shenzhen 518055, China
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 3State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
  • 4e-mail: heng.wei@u.nus.edu
  • 5e-mail: lightdong@yeah.net
  • show less
    DOI: 10.1364/PRJ.517652 Cite this Article Set citation alerts
    Kun Xue, Heng Wei, Cilei Zhang, Yonghao Zhang, Haoliang Sun, Shaohua Dong, "Transmissive reconfigurable metasurface enabling independent control of active and passive modules through weak coupling," Photonics Res. 12, 1449 (2024) Copy Citation Text show less
    References

    [1] G. V. Viktor. The electrodynamics of substances with simultaneously negative values of ε and μ. Phys. Usp., 10, 509-514(1968).

    [2] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [3] X. Ni, N. K. Emani, A. V. Kildishev. Broadband light bending with plasmonic nanoantenna. Science, 335, 427(2012).

    [4] S. L. Sun, K. Y. Yang, C. M. Wang. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [5] Z. Li, E. Palacios, S. Butun. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett., 15, 1615-1621(2015).

    [6] A. Díaz-Rubio, V. S. Asadchy, A. Elsakka. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv., 3, e1602714(2017).

    [7] A. H. Wong, G. V. Eleftheriades. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X, 8, 011036(2018).

    [8] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [9] W. T. Chen, K. Y. Yang, C. M. Wang. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225-230(2014).

    [10] G. Zheng, H. Muhlenbernd, M. Kenney. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [11] J. Lin, P. Genevet, M. A. Kats. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett., 13, 4269-4274(2013).

    [12] M. Khorasaninejad, W. T. Chen, R. C. Devlin. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [13] C. Hao, S. Gao, Q. Ruan. Single-layer aberration-compensated flat lens for robust wide-angle imaging. Laser Photon. Rev., 14, 2000017(2020).

    [14] K. Chen, Y. Feng, F. Monticone. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [15] X. Ni, Z. Wong, M. Mrejen. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [16] D. Schurig, J. J. Mock, B. J. Justice. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [17] Y. Huang, J. Luo, M. Pu. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv. Sci., 6, 1801691(2019).

    [18] H. Xu, G. Hu, Y. Wang. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci. Appl., 10, 75(2021).

    [19] T. Cai, B. Zheng, J. Lou. Experimental realization of a superdispersion-enabled ultrabroadband terahertz cloak. Adv. Mater., 34, e2205053(2022).

    [20] K. Xue, H. Zhai. A compact ultrawideband frequency selective rasorber with hybrid 2-D and 3-D structure. IEEE Antennas Wireless Propag. Lett., 21, 1872-1876(2022).

    [21] W. Sun, Q. He, S. Sun. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl., 5, e16003(2016).

    [22] S. Sun, Q. He, S. Xiao. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [23] N. Shitrit, I. Yulevich, E. Maguid. Spin-optical metamaterial route to spin-controlled photonics. Science, 340, 724-726(2013).

    [24] X. Yin, Z. Ye, J. Rho. Photonic spin hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [25] S. Dong, S. Li, X. Ling. Broadband spin-unlocked metasurfaces for bifunctional wavefront manipulations. Appl. Phys. Lett., 120, 181702(2022).

    [26] Q. Ma, W. Gao, Q. Xiao. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. elight, 2, 11(2022).

    [27] S. Dong, Q. Zhang, G. Cao. On-chip trans-dimensional plasmonic router. Nanophotonics, 9, 3357-3365(2020).

    [28] H. X. Xu, G. Hu, X. Kong. Super-reflector enabled by non-interleaved spin-momentum-multiplexed metasurface. Light Sci. Appl., 12, 78(2023).

    [29] S. Dong, G. Hu, Q. Wang. Loss-assisted metasurface at an exceptional point. ACS Photon., 7, 3321-3327(2020).

    [30] O. M. Ramahi, T. S. Almoneef, M. Alshareef. Metamaterial meta-atoms for electromagnetic energy harvesting. Appl. Phys. Lett., 101, 173903(2012).

    [31] X. Duan, X. Chen, L. Zhou. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency. AIP Adv., 6, 125020(2016).

    [32] G. T. Oumbe, V. Ginis, J. Danckaert. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting. Appl. Phys. Lett., 110, 083901(2017).

    [33] S. Pancharatnam. Generalized theory of interference, and its applications. Resonance, 18, 387-389(2013).

    [34] W. Luo, S. Sun, H. X. Xu. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Phys. Rev. Appl., 7, 044033(2017).

    [35] T. Cai, S. Tang, G. Wang. High performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Opt. Mater., 5, 1600506(2017).

    [36] Y. Zhuang, G. Wang, T. Cai. Design of bifunctional metasurface based on independent control of transmission and reflection. Opt. Express, 26, 3594-3603(2018).

    [37] D. Shrekenhamer, W. C. Chen, W. J. Padilla. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett., 110, 177403(2013).

    [38] S. F. Shi, B. Zeng, H. L. Han. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. Nano Lett., 14, 1578-1582(2014).

    [39] Y. G. Chen, T. S. Kao, B. Ng. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express, 21, 13691-13698(2013).

    [41] L. Liu, L. Kang, T. S. Mayer. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun., 7, 13236(2016).

         Y. Li, J. Lin, H. Guo. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [42] X. Song, W. Yang, K. Qu. Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes. Opt. Express, 29, 29320-29328(2021).

    [43] A. Lustrac, B. Ratni, G.-P. Piau. Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities. ACS Appl. Electron. Mater., 3, 1184-1190(2021).

    [44] S. Liu, T. J. Cui. Concepts, working principles, and applications of coding and programmable metamaterials. Adv. Opt. Mater., 5, 1700624(2017).

    [45] T. J. Cui, M. Q. Qi, X. Wan. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [46] C. Della Giovampaola, N. Engheta. Digital metamaterials. Nat. Mater., 13, 1115-1121(2014).

    [47] C. Huang, C. Zhang, J. Yang. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [48] H. Yang, X. Cao, F. Yang. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep., 6, 35692(2016).

    [49] X. G. Zhang, Q. Yu, W. X. Jiang. Polarization-controlled dual-programmable metasurfaces. Adv. Sci., 7, 1903382(2020).

    [50] Y. B. Li, L. L. Li, B. B. Xu. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging. Sci. Rep., 6, 23731(2016).

    [51] F. Diaby, A. Clemente, R. Sauleau. 2 Bit reconfigurable unit-cell and electronically steerable transmitarray at Ka-band. IEEE Trans. Antennas Propag., 68, 5003-5008(2020).

    [52] Y. Saifullah, Q. Chen, G.-M. Yang. Dual-band multi-bit programmable reflective metasurface unit cell: design and experiment. Opt. Express, 29, 2658-2668(2021).

    [53] M. Y. Shalaginov, S. An, Y. Zhang. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [54] M. E. Karim, S. M. Choudhury. Reconfigurable broadband metasurface with switchable functionalities in the visible range. Opt. Mater. Express, 13, 1409-1423(2023).

    [55] H. Xu, S. Ma, W. Luo. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Appl. Phys. Lett., 109, 193506(2016).

    [56] R. C. Devlin, M. Khorasaninejad, W. T. Chen. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. USA, 113, 10473-10478(2016).

    [57] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [58] N. Grady, J. Heyes, D. Chowdhury. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [59] H. P. Li, G. M. Wang, T. Cai. Wideband transparent beam-forming metadevice with amplitude and phase- controlled metasurface. Phys. Rev. Appl., 11, 014043(2019).

    Kun Xue, Heng Wei, Cilei Zhang, Yonghao Zhang, Haoliang Sun, Shaohua Dong, "Transmissive reconfigurable metasurface enabling independent control of active and passive modules through weak coupling," Photonics Res. 12, 1449 (2024)
    Download Citation