• Journal of the Chinese Ceramic Society
  • Vol. 53, Issue 1, 148 (2025)
YANG Sen, ZHENG Kang, and ZHAO Ning
Author Affiliations
  • College of Material Science and Engineering, Liaoning University of Engineering and Technology, Fuxin 123000, Liaoning, China
  • show less
    DOI: 10.14062/j.issn.0454-5648.20240518 Cite this Article
    YANG Sen, ZHENG Kang, ZHAO Ning. Advances in First-Principles Calculations of Silicon-Carbon Anode Materials forLithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 148 Copy Citation Text show less
    References

    [1] SCHMUCH R, WAGNER R, HRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nat Energy, 2018, 3: 267-278.

    [2] LU Y, ZHANG Q, CHEN J. Recent progress on lithium-ion batteries with high electrochemical performance[J]. Sci China Chem, 2019, 62(5): 533-548.

    [3] ZHAN X, LI M, LI S, et al. Challenges and opportunities towards silicon-based all-solid-state batteries[J]. Energy Storage Mater, 2023, 61: 102875.

    [4] MICHAN A L, DIVITINI G, PELL A J, et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes[J]. J Am Chem Soc, 2016, 138(25): 7918-7931.

    [5] MA J, SUNG J, HONG J, et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes[J]. Nat Commun, 2019, 10(1): 475.

    [6] WU M, CAI G K, LI Z, et al. Structures and properties of carbon-doped silicon as anode material for lithium ions battery: A first-principles study[J]. Vacuum, 2024, 225: 113222.

    [7] OUYANG Z Y, XU X D, CHE C R, et al. First principles investigations on the carbon-related defects in silicon[J]. Phys Status Solidi B: , 2024: 2400254.

    [8] QIN G Q, JIA Z T, SUN S Y, et al. Carbon-coated Si nanosheets as anode materials for high-performance lithium-ion batteries[J]. ACS Appl Nano Mater, 2024, 7(7): 7595-7604.

    [9] XU X T, MU X, HUANG T, et al. Robust silicon/carbon composite anode materials with high tap density and excellent cycling performance for lithium-ion batteries[J]. J Power Sources, 2024, 614: 234992.

    [10] YANG L, LI S N, ZHANG Y M, et al. Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries: A review[J]. J Energy Chem, 2024, 97: 30-45.

    [11] SADDIQUE J, WU M J, ALI W, et al. Opportunities and challenges of nano Si/C composites in lithium ion battery: A mini review[J]. J Alloys Compd, 2024, 978: 173507.

    [13] NIEVES-PREZ I, MUOZ A, ALMEIDA F, et al. Energy efficiency and performance analysis of a legacy atomic scale materials modeling simulator (VASP)[J]. J Supercomput, 2024, 80(11): 16679-16702.

    [15] TARDIO S, CUMPSON P J. Practical estimation of XPS binding energies using widely available quantum chemistry software[J]. Surf Interface Anal, 2018, 50(1): 5-12.

    [16] ROMERO A H, ALLAN D C, AMADON B, et al. ABINIT: Overview and focus on selected capabilities[J]. J Chem Phys, 2020, 152(12): 124102.

    [17] CARNIMEO I, AFFINITO F, BARONI S, et al. Quantum ESPRESSO: One further step toward the exascale[J]. J Chem Theory Comput, 2023, 19(20): 6992-7006.

    [18] GARCA A, PAPIOR N, AKHTAR A, et al. Siesta: Recent developments and applications[J]. J Chem Phys, 2020, 152(20): 204108.

    [19] SMITH M, TAMERUS A, HASNIP P. Portable acceleration of materials modeling software: CASTEP, GPUs, and OpenACC[J]. Comput Sci Eng, 2022, 24(1): 46-55.

    [21] CALLOW T J, HANSEN S B, KRAISLER E, et al. First-principles derivation and properties of density-functional average-atom models[J]. Phys Rev Research, 2022, 4(2): 023055.

    [22] PARK J, JUNG J H, JUNG K W, et al. Ab initio potential energy surfaces calculation via restricted Hartree-Fock for molecular dynamics simulation: A comprehensive review[J]. J Korean Phys Soc, 2024, 84(7): 550-565.

    [24] SODEYAMA K, USHIROGATA K, OKUNO Y, et al. SEI film formation mechanism based on aggregation configurations of electrolyte decomposed products: DFT-MD study[J]. Meet Abstr, 2016, MA2016-02(4): 570.

    [25] MAN Q Y, AN Y L, LIU C K, et al. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review[J]. J Energy Chem, 2023, 76: 576-600.

    [26] QIU T, LIANG L H. Research on the thickness effect and micro-fracture mechanism of graphite sheets with layered structures[J]. Diam Relat Mater, 2024, 143: 110908.

    [27] DOSE W M, PIERNAS-MUOZ M J, MARONI V A, et al. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries[J]. Chem Commun, 2018, 54(29): 3586-3589.

    [28] YANG C, ZHANG Y L, ZHOU J H, et al. Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage[J]. J Mater Chem A, 2018, 6(17): 8039-8046.

    [29] LIU B, HUANG P, LIU M Q, et al. Utilization of impurities and carbon defects in natural microcrystalline graphite to prepare silicon-graphite composite anode for high-performance lithium-ion batteries[J]. J Mater Sci, 2021, 56(31): 17682-17693.

    [30] OLOU’OU GUIFO S B, MUELLER J E, HENRIQUES D, et al. First-principles calculations of bulk, surface and interfacial phases and properties of silicon graphite composites as anode materials for lithium ion batteries[J]. Phys Chem Chem Phys, 2022, 24(16): 9432-9448.

    [31] GUO X B, YANG Z T, WANG W, et al. Silicon/carbon nanotubes anode for lithium-ion batteries: Synthesis, interface and electrochemical performance[J]. Surf Interfaces, 2024, 48: 104223.

    [33] CHEN Y F, DU N, ZHANG H, et al. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries[J]. J Alloys Compd, 2015, 622: 966-972.

    [34] WANG Y, WANG R S, ZHU H Z, et al. Atomic layer deposition of ultrathin Al2O3 layer on carbon nanotube anodes for potassium ion batteries with high initial coulombic efficiency and electrochemical performance[J]. Adv Mater Technol, 2023, 8(17): 2300435.

    [35] KAROUSIS N, TAGMATARCHIS N, TASIS D. Current progress on the chemical modification of carbon nanotubes[J]. Chem Rev, 2010, 110(9): 5366-5397.

    [36] KANG H E, KO J, SONG S G, et al. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries[J]. Carbon, 2024, 219: 118800.

    [37] HE Z Y, XIAO Z X, YUE H J, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes[J]. Adv Funct Materials, 2023, 33(26): 2300094.

    [38] NAJIM A, BAJJOU O, BAKOUR A, et al. Electronic and optical properties of SWCNTs and spin-orbit coupling effect on their electronic structures: First-principle computing[J]. J Electron Spectrosc Relat Phenom, 2023, 265: 147321.

    [39] WANG H L, CHAO Y F, LI J Z, et al. What is the real origin of single-walled carbon nanotubes for the performance enhancement of Si-based anodes?[J]. J Am Chem Soc, 2024, 146(25): 17041-17053.

    [40] HE Z Y, ZHANG C X, ZHU Y K, et al. The acupuncture effect of carbon nanotubes induced by the volume expansion of silicon-based anodes[J]. Energy Environ Sci, 2024, 17(10): 3358-3364.

    [41] ZHANG Z W, LI Y Z, XU R, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70.

    [42] WANG M, YANG C X, LENG X Y, et al. The interface effect on the lithiation of silicon/graphene composites: The first principles study[J]. Int J Quantum Chem, 2024, 124(3): 27343.

    [43] CHOU C Y, HWANG G S. Role of interface in the lithiation of silicon-graphene composites: A first principles study[J]. J Phys Chem C, 2013, 117(19): 9598-9604.

    [44] WANG G Q, XU B, SHI J, et al. Confined Li ion migration in the silicon-graphene complex system: An ab initio investigation[J]. Appl Surf Sci, 2018, 436: 505-510.

    [45] GAO X, LU W Q, XU J. Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21362-21370.

    [48] CHEN H, HUA Y R, LUO N J, et al. Lithiation abilities of SiC bulks and surfaces: A first-principles study[J]. J Phys Chem C, 2020, 124(13): 7031-7038.

    [49] MAJID A, FATIMA S A, UD-DIN KHAN S, et al. Assessment of 2H-SiC based intercalation compound for use as anode in lithium ion batteries[J]. Ceram Int, 2020, 46(4): 5297-5305.

    [50] SHARIF M N, YANG J S, ZHANG X K, et al. Tailoring electronic properties of 6H-SiC with different composition of silicon by first-principles calculations[J]. Adv Theory Simul, 2024, 7(6): 2400245.

    [51] SAKAI Y, OSHIYAMA A. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC[J]. J Appl Phys, 2015, 118(17): 175704.

    YANG Sen, ZHENG Kang, ZHAO Ning. Advances in First-Principles Calculations of Silicon-Carbon Anode Materials forLithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 148
    Download Citation