• Chinese Journal of Lasers
  • Vol. 46, Issue 1, 100004 (2019)
Zhao Zhentang1、*, Wang Dong1, Yin Lixin1, Gu Qiang1, Fang Guoping1, Gu Ming1, Leng Yongbin1, Zhou Qiaogen1, Liu Bo1, Tang Chuanxiang2, Huang Wenhui2, Liu Zhi3, Jiang Huaidong3, and Weng Zuqian3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/CJL201946.0100004 Cite this Article Set citation alerts
    Zhao Zhentang, Wang Dong, Yin Lixin, Gu Qiang, Fang Guoping, Gu Ming, Leng Yongbin, Zhou Qiaogen, Liu Bo, Tang Chuanxiang, Huang Wenhui, Liu Zhi, Jiang Huaidong, Weng Zuqian. Shanghai Soft X-Ray Free-Electron Laser Facility[J]. Chinese Journal of Lasers, 2019, 46(1): 100004 Copy Citation Text show less
    Aerial view of SSRF and SXFEL
    Fig. 1. Aerial view of SSRF and SXFEL
    Schematic of SXFEL layout
    Fig. 2. Schematic of SXFEL layout
    Simulated FEL output characteristics of SXFEL-TF. (a)(b) HGHG-HGHG cascading scheme; (c)(d) EEHG-HGHG cascading scheme; (e)(f) single EEHG scheme
    Fig. 3. Simulated FEL output characteristics of SXFEL-TF. (a)(b) HGHG-HGHG cascading scheme; (c)(d) EEHG-HGHG cascading scheme; (e)(f) single EEHG scheme
    Simulated FEL performance of SXFEL-UF. (a) Gain curve of seeded FEL line (3 nm) along length of undulator z; (b) output spectrum of seeded FEL line (3 nm) along length of undulator z; (c) gain curve of SASE line (2 nm); (d) output spectrum of SASE line (2 nm)
    Fig. 4. Simulated FEL performance of SXFEL-UF. (a) Gain curve of seeded FEL line (3 nm) along length of undulator z; (b) output spectrum of seeded FEL line (3 nm) along length of undulator z; (c) gain curve of SASE line (2 nm); (d) output spectrum of SASE line (2 nm)
    (a) Beamline layout and (b) key components of SXFEL user facility
    Fig. 5. (a) Beamline layout and (b) key components of SXFEL user facility
    (a) SXFEL building (SXFEL-TF and SXFEL-UF); (b) injector; (c) main accelerator; (d) FEL amplifier
    Fig. 6. (a) SXFEL building (SXFEL-TF and SXFEL-UF); (b) injector; (c) main accelerator; (d) FEL amplifier
    Commissioning results of linear accelerator and FEL of SXFEL-TF (June 2017). (a) Beam energy; (b) transverse emittance; (c) transverse beam spot; (d) second harmonic under HGHG scheme (133 nm)
    Fig. 7. Commissioning results of linear accelerator and FEL of SXFEL-TF (June 2017). (a) Beam energy; (b) transverse emittance; (c) transverse beam spot; (d) second harmonic under HGHG scheme (133 nm)
    3rd-6th harmonic spectra of first HGHG output of SXFEL. (a) 3rd harmonic; (b) 4th harmonic; (c) 5th harmonic; (d) 6th harmonic
    Fig. 8. 3rd-6th harmonic spectra of first HGHG output of SXFEL. (a) 3rd harmonic; (b) 4th harmonic; (c) 5th harmonic; (d) 6th harmonic
    Results of EEHG experiment at SXFEL. (a) EEHG spectrum of 11th harmonic; (b) HGHG spectrum of 11th harmonic; (c) EEHG coherent signal of 30th harmonic
    Fig. 9. Results of EEHG experiment at SXFEL. (a) EEHG spectrum of 11th harmonic; (b) HGHG spectrum of 11th harmonic; (c) EEHG coherent signal of 30th harmonic
    ParameterSXFEL-TFSXFEL-UF
    Electron beam energy /GeV0.841.5
    Energy spread (RMS) /%≤0.1≤0.1
    Normalized emittance (RMS)≤2.0≤1.5
    Bunch length (full widthat half maximum, FWHM) /ps≤1.0≤0.7
    Bunch charge /nC0.50.5
    Peak current /A≥500≥700
    Repetition rate /Hz1050
    Table 1. Main parameters of SXFEL linear accelerator
    DeviceElectron beamenergy /MeVBunchlength /mmEnergyspread /%Gradient /(MV·m-1)Phase /(°)Momentumcompression factor /mm
    L01300.860.14
    L12730.861.4427-29.2
    X2560.861.5119180
    BC10.13-48
    L26400.130.42384
    BC20.07-15
    L315000.070.028386
    Table 2. Designed working parameters of SXFEL-UF
    ParameterSXFEL-TFSXFEL-UF
    Seeded FEL lineSASE FEL line
    FEL operation schemeHGHG-HGHG/EEHG-HGHGExternally seeded FELSASE
    Seed laser wavelength /nm266240-360
    FEL wavelength /nm8.83-202-10
    FEL peak power /MW≥100≥100≥100
    FEL pulse length (FWHM) /fs~100~50~100
    Table 3. FEL parameters of SXFEL
    DeviceParameterValue
    Stage 1 ofseeded FEL linePeriod /mmLength /m801.6
    Quantity2
    ModulatorTypePlanar, hybrid
    Maximal peak field /T0.78
    Minimum gap /mm10
    Period /mmLength /m403
    Quantity4
    RadiatorTypePlanar, hybrid
    Maximal peak field /T0.85
    Minimum gap /mm10
    Stage 2 ofseeded FEL linePeriod /mmLength /m551.6
    Quantity1
    ModulatorTypePlanar, hybrid
    Maximal peak field /T1.42
    Minimum gap /mm10
    Period /mmLength /m23.53
    Quantity10
    RadiatorTypePlanar, hybrid
    Maximal peak field /T0.65
    Minimum gap /mm8.75
    Period /mmLength /m303
    Quantity2
    AfterburnerTypeElliptical, APPLE-II
    Maximal peak field /T0.8/0.85/0.6*
    Minimum gap /mm4
    Period /mmLength /m164
    Quantity10
    SASE FEL lineUndulatorTypePlanar, hybrid, in-vacuum
    Maximal peak field /T1.14
    Minimum gap /mm4
    Table 4. Main parameters of SXFEL undulators
    ParameterSASE FEL beamlineSeeded FEL beamline
    Wavelength /nm1.2-122.4-24
    Photon energy /eV100-100050-500
    Pulse energy /μJ330(100 eV), 47(620 eV)64(56 eV), 5(500 eV)
    Photon number per pulse~4.6×1011(620 eV),~1.3×1013(100 eV)~5.0×109(500 eV)~2.9×1012(50 eV)
    Relative bandwidth /%0.04-0.200.008-0.040
    Resolving power of spectrometer~3×104(620 eV)~4×103(200 eV)
    Spot size (RMS) /μm~3~10
    FEL pulse length (FWHM) /fs117(620 eV)50(300 eV)
    Table 5. FEL parameters of SXFEL at sample points
    Zhao Zhentang, Wang Dong, Yin Lixin, Gu Qiang, Fang Guoping, Gu Ming, Leng Yongbin, Zhou Qiaogen, Liu Bo, Tang Chuanxiang, Huang Wenhui, Liu Zhi, Jiang Huaidong, Weng Zuqian. Shanghai Soft X-Ray Free-Electron Laser Facility[J]. Chinese Journal of Lasers, 2019, 46(1): 100004
    Download Citation