• Acta Physica Sinica
  • Vol. 68, Issue 18, 185202-1 (2019)
Ming-Hao Yu*
DOI: 10.7498/aps.68.20190865 Cite this Article
Ming-Hao Yu. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68(18): 185202-1 Copy Citation Text show less
Schematic diagram of the ICP wind tunnel system.ICP风洞系统结构布局
Fig. 1. Schematic diagram of the ICP wind tunnel system.ICP风洞系统结构布局
Computational mesh and geometry of the inductively coupled plasma torch: (a) Computational mesh of electromagnetic- and flow-field; (b) geometric construction of the ICP torch.ICP炬计算网格和几何结构 (a) 电磁场与流场计算网格; (b) 等离子体炬几何结构
Fig. 2. Computational mesh and geometry of the inductively coupled plasma torch: (a) Computational mesh of electromagnetic- and flow-field; (b) geometric construction of the ICP torch.ICP炬计算网格和几何结构 (a) 电磁场与流场计算网格; (b) 等离子体炬几何结构
Distributions of streamlines and velocity vector (upper), and electron temperature (lower) in the torch.等离子体炬内气体流线和速度矢量(上半部分)以及电子温度云图(下半部分)分布
Fig. 3. Distributions of streamlines and velocity vector (upper), and electron temperature (lower) in the torch.等离子体炬内气体流线和速度矢量(上半部分)以及电子温度云图(下半部分)分布
Distributions of streamlines (upper) and pressure contour (lower).等离子体流线(上半部分)和压力云图(下半部分)分布
Fig. 4. Distributions of streamlines (upper) and pressure contour (lower).等离子体流线(上半部分)和压力云图(下半部分)分布
Distributions of axial Lorentz force (upper) and radial Lorentz force (lower).轴向洛伦兹力(上半部分)和径向洛伦兹力(下半部分)的分布
Fig. 5. Distributions of axial Lorentz force (upper) and radial Lorentz force (lower).轴向洛伦兹力(上半部分)和径向洛伦兹力(下半部分)的分布
Distributions of Joule heating rate(lower) and radial Lorentz force (upper)径向洛伦兹力(上半部分)和焦耳加热率(下半部分)的分布
Fig. 6. Distributions of Joule heating rate(lower) and radial Lorentz force (upper)径向洛伦兹力(上半部分)和焦耳加热率(下半部分)的分布
Distribution of electric-field intensity (imaginary part EI (upper) and real part ER (lower)).电场强度分布(虚部EI (上半部分)实部ER(下半部分))
Fig. 7. Distribution of electric-field intensity (imaginary part EI (upper) and real part ER (lower)). 电场强度分布(虚部EI (上半部分)实部ER(下半部分))
Distribution of electric field intensity EI (upper) and electron number density ne (lower).电场强度Ei(上)和电子数密度ne(下)的分布
Fig. 8. Distribution of electric field intensity EI (upper) and electron number density ne (lower). 电场强度Ei(上)和电子数密度ne(下)的分布
Mole fraction of air species along the radial direction at the coil center x = 68 mm.感应线圈中心(x = 68 mm)空气粒子径向摩尔分数分布
Fig. 9. Mole fraction of air species along the radial direction at the coil center x = 68 mm. 感应线圈中心(x = 68 mm)空气粒子径向摩尔分数分布
Distributions of translational (upper) and electronic temperatures (lower) in the torch.等离子体炬内平动温度(上半部分)和电子温度(下半部分)分布云图
Fig. 10. Distributions of translational (upper) and electronic temperatures (lower) in the torch.等离子体炬内平动温度(上半部分)和电子温度(下半部分)分布云图
r反应物生成物TfTbCrnθr文献
离解/复合反应 (S1 = N2, O2, NO; S2 = N, O; S3 = N2, O2; S4 = NO, N, O) 1—3N2 + S1$ \rightleftharpoons $N + N + S1$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$7.0 × 1021–1.60113200[35]
4—5N2 + S2$ \rightleftharpoons $N + N + S2$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$3.0 × 1022–1.60113200[35]
6—8O2 + S1$ \rightleftharpoons $O + O + S1$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$2.0 × 1021–1.5059500[35]
9—10O2 + S2$ \rightleftharpoons $O + O + S2$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$1.0 × 1022–1.5059500[35]
11—12NO + S3$ \rightleftharpoons $N + O + S3$\sqrt {{T_{{\rm{tr}}}}{T_{{\rm{vib}}}}} $${T_{{\rm{tr}}}}$5.0 × 10150.0075500[35]
13—15NO + S4$ \rightleftharpoons $N + O + S4${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.1 × 10170.0075500[35]
泽尔多维奇反应16N2 + O $ \rightleftharpoons $NO + N${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$6.4 × 1017–1.0038400[35]
17NO + O$ \rightleftharpoons $N + O2${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$8.4 × 10120.0019450[35]
电量交换反应18N2 + N+$ \rightleftharpoons $N2+ + N ${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.0 × 10120.5012200[35]
19O2+ + O $ \rightleftharpoons $O+ + O2${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$4.0 × 1012–0.0918000[35]
20NO+ + O $ \rightleftharpoons $NO + O+${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$3.63 × 1015–0.6013000[33]
21O+ + N2$ \rightleftharpoons $N2+ + O ${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$9.1 × 10110.3622800[35]
22NO+ + O2$ \rightleftharpoons $O2+ + NO ${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$2.4 × 10130.4132600[35]
23NO+ + N $ \rightleftharpoons $NO + N+${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.0 × 1019–0.9361000[33]
24NO+ + O $ \rightleftharpoons $N+ + O2${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$1.0 × 10120.5077200[35]
副电离反应25N + N$ \rightleftharpoons $N2+ + e${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$4.4 × 1071.5067500[35]
26O + O$ \rightleftharpoons $O2+ + e${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$7.1 × 1022.7080600[35]
27N + O$ \rightleftharpoons $NO+ + e${T_{{\rm{tr}}}}$${T_{{\rm{tr}}}}$8.8 × 1081.0031900[35]
28O2 + N2$ \rightleftharpoons $NO + NO+ + e$\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $${T_{\rm{e}}}$1.38 × 1020–1.84141000[33]
29N2 + NO $ \rightleftharpoons $N2 + NO+ + e$\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $${T_{\rm{e}}}$2.20 × 1015–0.35108000[33]
30O2 + NO $ \rightleftharpoons $O2 + NO+ + e$\sqrt {{T_{\rm{e}}}{T_{{\rm{vib}}}}} $${T_{\rm{e}}}$8.80 × 1016–0.35108000[33]
电子碰撞电离反应31N + e$ \rightleftharpoons $N+ + e + e${T_{\rm{e}}}$${T_{\rm{e}}}$2.5 × 1034–3.82168600[35]
32O + e$ \rightleftharpoons $O+ + e + e${T_{\rm{e}}}$${T_{\rm{e}}}$3.9 × 1033–3.78158500[35]
Table 1.

Chemical reaction model of air.

空气化学反应模型

Ming-Hao Yu. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68(18): 185202-1
Download Citation