[1] Veselago V G 1968 The electrodynamics of substances with simultaneously negative values of and Sov. Phys.—Usp.10 509
[2] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 Magnetism from conductors and enhanced nonlinear phenomena IEEE Trans. Microw. Theory Technol.47 2075–84
[3] Shelby R A, Smith D R and Schultz S 2001 Experimental verification of a negative index of refraction Science292 77–79
[4] Wen X Y and Deng S K 2023 Plasmonic nanostructure lattices for high-performance sensing Adv. Opt. Mater.11 2300401
[5] Guo C, Yu J Y and Deng S K 2023 Hybrid metasurfaces of plasmonic lattices and 2D materials Adv. Funct. Mater.33 2302265
[6] Guan J, Park J E, Deng S K, Tan M J H, Hu J T and Odom T W 2022 Light–matter interactions in hybrid material metasurfaces Chem. Rev.122 15177–203
[7] Ng C, Wesemann L, Panchenko E, Song J C, Davis T J, Roberts A and Gmez D E 2019 Plasmonic near-complete optical absorption and its applications Adv. Opt. Mater.7 1801660
[8] Li J Z, Li J Y, Zhou S D and Yi F 2021 Metasurface photodetectors Micromachines12 1584
[9] Wang D Q, Guan J, Hu J T, Bourgeois M R and Odom T W 2019 Manipulating light–matter interactions in plasmonic nanoparticle lattices Acc. Chem. Res.52 2997–3007
[10] Cheng P J, Huang Z T, Li J H, Chou B T, Chou Y H, Lo W C, Chen K P, Lu T C and Lin T R 2018 High-performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications ACS Photonics5 2638–44
[11] Li G C, Lei D Y, Qiu M, Jin W, Lan S and Zayats A V 2021 Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity Nat. Commun.12 4326
[12] Yang J, Li Y Z, Yang Y M, Xie X R, Zhang Z J, Yuan J L, Cai H, Wang D W and Gao F 2024 Realization of all-band-flat photonic lattices Nat. Commun.15 1484
[13] Patoux A, Agez G, Girard C, Paillard V, Wiecha P R, Lecestre A, Carcenac F, Larrieu G and Arbouet A 2021 Challenges in nanofabrication for efficient optical metasurfaces Sci. Rep.11 5620
[14] Wang Y H, Mirkin C A and Park S J 2009 Nanofabrication beyond electronics ACS Nano3 1049–56
[15] Balykin V I, Borisov P A, Letokhov V S, Melentiev P N, Rudnev S N, Cherkun A P, Akimenko A P, Apel P Y and Skuratov V A 2006 Atom “pinhole camera” with nanometer resolution JETP Lett.84 466–9
[16] Komlenok M S, Tikhodeev S G, Weiss T, Lebedev S P, Komandin G A and Konov V I 2018 All-carbon diamond/graphite metasurface: experiment and modeling Appl. Phys. Lett.113 041101
[17] Yan C, Li X, Pu M B, Ma X L, Zhang F, Gao P, Guo Y H, Liu K P, Zhang Z J and Luo X G 2019 Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces ACS Photonics6 628–33
[18] Reyntjens S and Puers R 2001 A review of focused ion beam applications in microsystem technology J. Micromech. Microeng.11 287–300
[19] Chen Y F 2015 Nanofabrication by electron beam lithography and its applications: a review Microelectron. Eng.135 57–72
[20] Hu H, Kim H J and Somnath S 2017 Tip-based nanofabrication for scalable manufacturing Micromachines8 90
[21] Li N X, Xu Z J, Dong Y, Hu T, Zhong Q Z, Fu Y H, Zhu S Y and Singh N 2020 Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab Nanophotonics9 3071–87
[22] Lu Z X, Zheng J T, Shi J, Zeng B F, Yang Y, Hong W J and Tian Z Q 2021 Application of micro/nanofabrication techniques to on-chip molecular electronics Small Methods5 2001034
[23] Nayfeh M H 2018 Manipulation and patterning of surfaces (nanolithography) Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends ed M Nayfeh (Elsevier) ch 5, pp 89–137
[24] Ovsianikov A, Malinauskas M, Schlie S, Chichkov B, Gittard S, Narayan R, Lbler M, Sternberg K, Schmitz K P and Haverich A 2011 Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications Acta Biomater.7 967–74
[25] Keller L et al 2018 Direct-write of free-form building blocks for artificial magnetic 3D lattices Sci. Rep.8 6160
[26] Achal R, Rashidi M, Croshaw J, Churchill D, Taucer M, Huff T, Cloutier M, Pitters J and Wolkow R A 2018 Lithography for robust and editable atomic-scale silicon devices and memories Nat. Commun.9 2778
[27] Kenney M et al 2019 Large area metasurface lenses in the NIR region Proc. SPIE11057
[28] Groves T R 2014 3—Electron beam lithography Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems ed M Feldman (Woodhead Publishing) pp 80–115
[29] Shorubalko I, Pillatsch L and Utke I 2016 Direct–write milling and deposition with noble gases Helium Ion Microscopy ed G Hlawacek and A Glzhuser (Springer International Publishing) pp 355–93
[30] He S X, Tian R, Wu W, Li W D and Wang D Q 2021 Helium-ion-beam nanofabrication: extreme processes and applications Int. J. Extrem. Manuf.3 012001
[31] Rommel M, Jambreck J D, Ebm C, Platzgummer E, Bauer A J and Frey L 2010 Influence of FIB patterning strategies on the shape of 3D structures: comparison of experiments with simulations Microelectron. Eng.87 1566–8
[32] Huth M, Porrati F and Dobrovolskiy O V 2017 Focused electron beam induced deposition meets materials science Microelectron. Eng.185–186 9–28
[33] Winkler R, Schmidt F P, Haselmann U, Fowlkes J D, Lewis B B, Kothleitner G, Rack P D and Plank H 2017 Direct-write 3D nanoprinting of plasmonic structures ACS Appl. Mater. Interfaces9 8233–40
[34] Lewis B B, Winkler R, Sang X H, Pudasaini P R, Stanford M G, Plank H, Unocic R R, Fowlkes J D and Rack P D 2017 3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity Beilstein J. Nanotechnol.8 801–12
[35] Pan R H, Li Z C, Liu Z, Zhu W, Zhu L, Li Y L, Chen S Q, Gu C Z and Li J J 2020 Rapid bending origami in Micro/Nanoscale toward a versatile 3D metasurface Laser Photonics Rev.14 1900179
[36] Cui A J et al 2015 Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances Light Sci. Appl.4 e308
[37] Garcia R, Knoll A W and Riedo E 2014 Advanced scanning probe lithography Nat. Nanotechnol.9 577–87
[38] Grebenko A K et al 2022 Local ultra-densification of single-walled carbon nanotube films: experiment and mesoscopic modeling Carbon196 979–87
[39] Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E and Faupel F 2012 Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects Adv. Colloid Interface Sci.170 2–27
[40] Ryu K S, Wang X F, Shaikh K, Bullen D, Goluch E, Zou J, Liu C and Mirkin C A 2004 Integrated microfluidic linking chip for scanning probe nanolithography Appl. Phys. Lett.85 136–8
[41] Smith J C, Lee K B, Wang Q, Finn M G, Johnson J E, Mrksich M and Mirkin C A 2003 Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid Nano Lett.3 883–6
[42] Sun S Q and Leggett G J 2004 Matching the resolution of electron beam lithography by scanning near-field photolithography Nano Lett.4 1381–4
[43] Maoz R, Frydman E, Cohen S R and Sagiv J 2000 “Constructive nanolithography”: inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures—a generic approach Adv. Mater.12 725–31
[44] Eigler D M and Schweizer E K 1990 Positioning single atoms with a scanning tunnelling microscope Nature344 524–6
[45] Crommie M F, Lutz C P and Eigler D M 1993 Confinement of electrons to quantum corrals on a metal surface Science262 218–20
[46] Rawlings C, Wolf H, Hedrick J L, Coady D J, Duerig U and Knoll A W 2015 Accurate location and manipulation of nanoscaled objects buried under spin-coated films ACS Nano9 6188–95
[47] Wang Y J et al 2021 High-efficiency broadband achromatic metalens for near-IR biological imaging window Nat. Commun.12 5560
[48] Su V C, Chu C H, Sun G and Tsai D P 2018 Advances in optical metasurfaces: fabrication and applications Opt. Express26 13148–82
[49] Yuan D D, Li J, Huang J X, Wang M, Xu S L and Wang X W 2022 Large-scale laser nanopatterning of multiband tunable mid-infrared metasurface absorber Adv. Opt. Mater.10 2200939
[50] Barton J E and Odom T W 2004 Mass-limited growth in Zeptoliter beakers: a general approach for the synthesis of nanocrystals Nano Lett.4 1525–8
[51] Yoo J-H et al 2019 Scalable light-printing of substrate-engraved free-form metasurfaces ACS Appl. Mater. Interfaces11 22684–91
[52] Xu Z J, Jiang L, Li X W, Wang A D, Li B H, Huang L L, Lin Z M, Huang J and Lu Y F 2019 Flash ablation of tunable and deep-subwavelength nanogap by using a spatially modulated femtosecond laser pulse for plasmonic application ACS Appl. Nano Mater.2 4933–41
[53] Maruo S, Nakamura O and Kawata S 1997 Three-dimensional microfabrication with two-photon-absorbed photopolymerization Opt. Lett.22 132–4
[54] Witzgall G, Vrijen R, Yablonovitch E, Doan V and Schwartz B J 1998 Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures Opt. Lett.23 1745–7
[55] Bentley S J and Boyd R W 2004 Nonlinear optical lithography with ultra-high sub-Rayleigh resolution Opt. Express12 5735–40
[56] Wu E S, Strickler J H, Harrell W R and Webb W W 1992 Two-photon lithography for microelectronic application Proc. SPIE1674 776–82
[57] Hong S and Mirkin C A 2000 A nanoplotter with both parallel and serial writing capabilities Science288 1808–11
[58] Rai-Choudhury P 1997 Handbook of Microlithography, Micromachining, and Microfabrication. Volume 1, Microlithography (SPIE Optical Engineering Press)
[59] Semple M, Baladi E and Iyer A K 2019 Optical metasurface based on subwavelength nanoplasmonic metamaterial-lined apertures IEEE J. Sel. Top. Quantum Electron.25 4700508
[60] Yasuda H, Arai S, Kai J I, Ooae Y, Abe T, Takahashi Y, Hueki S, Maruyama S, Satoru Sago S S and Keiichi Betsui K B 1993 Fast electron beam lithography system with 1024 beams individually controlled by blanking aperture array Jpn. J. Appl. Phys.32 6012–7
[61] Chang T H P, Mankos M, Lee K Y and Muray L P 2001 Multiple electron-beam lithography Microelectron. Eng.57–58 117–35
[62] Huo F W, Zheng Z J, Zheng G F, Giam L R, Zhang H and Mirkin C A 2008 Polymer pen lithography Science321 1658–60
[63] Shim W, Braunschweig A B, Liao X, Chai J N, Lim J K, Zheng G F and Mirkin C A 2011 Hard-tip, soft-spring lithography Nature469 516–20
[64] Salaita K, Wang Y H, Fragala J, Vega R A, Liu C and Mirkin C A 2006 Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays Angew. Chem., Int. Ed.45 7220–3
[65] Wang S, Hosford J, Heath W P and Wong L S 2015 Large-area scanning probe nanolithography facilitated by automated alignment of probe arrays RSC Adv.5 61402–9
[66] Leitis A, Tseng M L, John-Herpin A, Kivshar Y S and Altug H 2021 Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing Adv. Mater.33 2102232
[67] Lubin S M, Zhou W, Hryn A J, Huntington M D and Odom T W 2012 High-rotational symmetry lattices fabricated by Moir nanolithography Nano Lett.12 4948–52
[68] Van Rossum M 2005 Integrated circuits Encyclopedia of Condensed Matter Physics ed F Bassani, G L Liedl and P Wyder (Elsevier) pp 394–403
[69] Rice B J 2014 Extreme ultraviolet (EUV) lithography Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems ed M Feldman (Woodhead Publishing) ch 2, pp 42–79
[70] Barnola S, Posseme N, Landis S and Darnon M 2017 Patterning challenges in microelectronics Plasma Etching Processes for CMOS Devices Realization ed N Posseme (ISTE Press) ch 3, pp 59–94
[71] Dong Y et al 2020 Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform Nanophotonics9 149–57
[72] Hu T et al 2018 Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer Opt. Express26 19548–54
[73] Park J-S et al 2024 All-glass 100 mm diameter visible metalens for imaging the cosmos ACS Nano18 3187–98
[74] Kim J et al 2023 Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible Nat. Mater.22 474–81
[75] Park J S, Zhang S Y, She A L, Chen W T, Lin P, Yousef K M A, Cheng J X and Capasso F 2019 All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography Nano Lett.19 8673–82
[76] Malinauskas M, ukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R and Juodkazis S 2016 Ultrafast laser processing of materials: from science to industry Light Sci. Appl.5 e16133
[77] Harinarayana V and Shin Y C 2021 Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review Opt. Laser Technol.142 107180
[78] Ruiz de Galarreta C, Casquero N, Humphreys E, Bertolotti J, Solis J, Wright C D and Siegel J 2022 Single-step fabrication of high-performance extraordinary transmission plasmonic metasurfaces employing ultrafast lasers ACS Appl. Mater. Interfaces14 3446–54
[79] Trautmann A, Roth G L, Nujiqi B, Walther T and Hellmann R 2019 Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays Microsyst. Nanoeng.5 6
[80] Yang B, Fang X E and Kong J L 2020 Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch Adv. Funct. Mater.30 2000591
[81] Liu Y J, Lee Y H, Lee M R, Yang Y J and Ling X Y 2017 Flexible three-dimensional anticounterfeiting plasmonic security labels: utilizing Z-axis-dependent SERS readouts to encode multilayered molecular information ACS Photonics4 2529–36
[82] Aderneuer T, Fernndez O and Ferrini R 2021 Two-photon grayscale lithography for free-form micro-optical arrays Opt. Express29 39511–20
[83] Li F, Liu S F, Liu W, Hou Z W, Jiang J X, Fu Z, Wang S, Si Y L, Lu S Y and Zhou H W 2023 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals Science381 1468–74
[84] Wang H, Liu Y J, Ruan Q F, Liu H L, Ng R J H, Tan Y S, Wang H T, Li Y, Qiu C W and Yang J K W 2019 Off-axis holography with uniform illumination via 3D printed diffractive optical elements Adv. Opt. Mater.7 1900068
[85] Wang H, Wang H T, Zhang W and Yang J K W 2020 Toward near-perfect diffractive optical elements via nanoscale 3D printing ACS Nano14 10452–61
[86] Ouyang W Q, Xu X Y, Lu W P, Zhao N, Han F and Chen S C 2023 Ultrafast 3D nanofabrication via digital holography Nat. Commun.14 1716
[87] Wang L, Gong W, Cao X W, Yu Y H, Juodkazis S and Chen Q D 2023 Holographic laser fabrication of 3D artificial compound -eyes Light Adv. Manuf.4 26
[88] Pan L et al 2011 Maskless plasmonic lithography at 22 nm resolution Sci. Rep.1 175
[89] Huang J X, Xu K, Hu J, Yuan D D, Li J, Qiao J Y and Xu S L 2022 Self-aligned plasmonic lithography for maskless fabrication of large-area long-range ordered 2D nanostructures Nano Lett.22 6223–8
[90] Mojarad N, Gobrecht J and Ekinci Y 2015 Interference lithography at EUV and soft x-ray wavelengths: principles, methods, and applications Microelectron. Eng.143 55–63
[91] Wang L, Terhalle B, Guzenko V A, Farhan A, Hojeij M and Ekinci Y 2012 Generation of high-resolution Kagome lattice structures using extreme ultraviolet interference lithography Appl. Phys. Lett.101 093104
[92] Hong F and Blaikie R 2019 Plasmonic lithography: recent progress Adv. Opt. Mater.7 1801653
[93] Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K and Misawa H 2008 Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source J. Am. Chem. Soc.130 6928–9
[94] Ueno K, Takabatake S, Onishi K, Itoh H, Nishijima Y and Misawa H 2011 Homogeneous nano-patterning using plasmon-assisted photolithography Appl. Phys. Lett.99 011107
[95] Campbell M, Sharp D N, Harrison M T, Denning R G and Turberfield A J 2000 Fabrication of photonic crystals for the visible spectrum by holographic lithography Nature404 53–56
[96] Xue G P, Zhai Q H, Lu H O, Zhou Q, Ni K, Lin L Y, Wang X H and Li X H 2021 Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability Microsyst. Nanoeng.7 31
[97] Kamali S M, Arbabi E, Kwon H and Faraon A 2019 Metasurface-generated complex 3-dimensional optical fields for interference lithography Proc. Natl Acad. Sci. USA116 21379–84
[98] Jang J H, Ullal C K, Maldovan M, Gorishnyy T, Kooi S, Koh C and Thomas E 2007 3D micro- and nanostructures via interference lithography Adv. Funct. Mater.17 3027–41
[99] Lu C and Lipson R H 2010 Interference lithography: a powerful tool for fabricating periodic structures Laser Photonics Rev.4 568–80
[100] Stankeviius E, Gedvilas M, Voisiat B, Malinauskas M and Raiukaitis G 2013 Fabrication of periodic micro-structures by holographic lithography Lith. J. Phys.53 227–37
[101] Bagal A et al 2017 Large-area nanolattice film with enhanced modulus, hardness, and energy dissipation Sci. Rep.7 9145
[102] Bae G, Jang D and Jeon S 2021 Scalable fabrication of high-performance thin-shell oxide nanoarchitected materials via proximity-field nanopatterning ACS Nano15 3960–70
[103] Kagias M, Lee S, Friedman A C, Zheng T Z, Veysset D, Faraon A and Greer J R 2023 Metasurface-enabled holographic lithography for impact-absorbing nanoarchitected sheets Adv. Mater.35 2209153
[104] Gan Z F et al 2022 Spatial modulation of nanopattern dimensions by combining interference lithography and grayscale-patterned secondary exposure Light Sci. Appl.11 89
[105] Ariga K, Hill J P and Ji Q M 2007 Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application Phys. Chem. Chem. Phys.9 2319–40
[106] Cheng Q H, Fang H T, Cao R, Ma Z Y, Wang S, Xie R G, Xia H B and Wang D Y 2022 Interfacial self-assembly of nanoparticles into macroscopic, monolayered films Supramol. Mater.1 100021
[107] Cao T, Liu K, Lu L, Chui H C and Simpson R E 2019 Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles ACS Appl. Mater. Interfaces11 5176–82
[108] Qu T, Liu F, Lin Y C and Huang Y D 2019 Large-area fabrication of metasurface on microspheres based on colloidal assembly and femtosecond ablation Proc. SPIE10928
[109] Borah R, Ag K R, Minja A C and Verbruggen S W 2023 A review on self-assembly of colloidal nanoparticles into clusters, patterns, and films: emerging synthesis techniques and applications Small Methods7 2201536
[110] Zhou S et al 2022 Chiral assemblies of pinwheel superlattices on substrates Nature612 259–65
[111] Vogel N, Goerres S, Landfester K and Weiss C K 2011 A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction Macromol. Chem. Phys.212 1719–34
[112] Haynes C L and Van Duyne R P 2001 Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics J. Phys. Chem. B 105 5599–611
[113] Gmez-Graa S et al 2013 Au@Ag nanoparticles: halides stabilize {100} facets J. Phys. Chem. Lett.4 2209–16
[114] Alvarez L, Fernandez-Rodriguez M A, Alegria A, Arrese-Igor S, Zhao K, Krger M and Isa L 2021 Reconfigurable artificial microswimmers with internal feedback Nat. Commun.12 4762
[115] Qian F, Pascall A J, Bora M, Han T Y J, Guo S R, Ly S S, Worsley M A, Kuntz J D and Olson T Y 2015 On-demand and location selective particle assembly via electrophoretic deposition for fabricating structures with particle-to-particle precision Langmuir31 3563–8
[116] Zhang G Q, Lan C W, Bian H L, Gao R and Zhou J 2017 Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing Opt. Express25 22038–45
[117] Ma C R, Zhou F R, Huang P F, Li M, Zhao F, Liu Y, Du C, Li X P, Guan B O and Chen K 2022 Mass fabrication of WS2 nanodisks and their scattering properties Adv. Mater. Technol.7 2200432
[118] Ponomareva E, Volk K, Mulvaney P and Karg M 2020 Surface lattice resonances in self-assembled gold nanoparticle arrays: impact of lattice period, structural disorder, and refractive index on resonance quality Langmuir36 13601–12
[119] Li R R, Mao H Y, Zhu M H, Yang Y D, Xiong J J and Wang W B 2019 Facile preparation of broadband absorbers based on patternable candle soot for applications of optical sensors Sens. Actuators A 285 111–7
[120] Yildirim D U, Ghobadi A, Soydan M C, Atesal O, Toprak A, Caliskan M D and Ozbay E 2019 Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface ACS Photonics6 1812–22
[121] Vinnacombe-Willson G A, Conti Y, Jonas S J, Weiss P S, Mihi A and Scarabelli L 2022 Surface lattice Plasmon resonances by direct in situ substrate growth of gold nanoparticles in ordered arrays Adv. Mater.34 2205330
[122] Scarabelli L, Vila-Liarte D, Mihi A and Liz-Marzn L M 2021 Templated colloidal self-assembly for lattice Plasmon engineering Acc. Mater. Res.2 816–27
[123] Flauraud V, Mastrangeli M, Bernasconi G D, Butet J, Alexander D T L, Shahrabi E, Martin O J F and Brugger J 2017 Nanoscale topographical control of capillary assembly of nanoparticles Nat. Nanotechnol.12 73–80
[124] Zhang H Y et al 2021 Direct assembly of vertically oriented, gold nanorod arrays Adv. Funct. Mater.31 2006753
[125] Lee Y H, Lay C L, Shi W X, Lee H K, Yang Y J, Li S Z and Ling X Y 2018 Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles Nat. Commun.9 2769
[126] Lee Y H, Shi W X, Yang Y J, Kao Y C, Lee H K, Chu R R, Pang Y L, Lay C L, Li S Z and Ling X Y 2020 Modulating orientational order to organize polyhedral nanoparticles into plastic crystals and uniform metacrystals Angew. Chem., Int. Ed.59 21183–9
[127] Bates C M, Maher M J, Janes D W, Ellison C J and Willson C G 2014 Block copolymer lithography Macromolecules47 2–12
[128] Welander A M, Kang H M, Stuen K O, Solak H H, Mller M, de Pablo J J and Nealey P F 2008 Rapid directed assembly of block copolymer films at elevated temperatures Macromolecules41 2759–61
[129] Sinturel C, Vayer M, Morris M and Hillmyer M A 2013 Solvent vapor annealing of block polymer thin films Macromolecules46 5399–415
[130] Ryu D Y, Shin K, Drockenmuller E, Hawker C J and Russell T P 2005 A generalized approach to the modification of solid surfaces Science308 236–9
[131] Bang J, Bae J, Lwenhielm P, Spiessberger C, Given-beck S A, Russell T P and Hawker C 2007 Facile routes to patterned surface neutralization layers for block copolymer lithography Adv. Mater.19 4552–7
[132] Jung H, Leibfarth F A, Woo S, Lee S, Kang M, Moon B, Hawker C J and Bang J 2013 Efficient surface neutralization and enhanced substrate adhesion through ketene mediated crosslinking and functionalization Adv. Funct. Mater.23 1597–602
[133] Bita I, Yang J K W, Jung Y S, Ross C A, Thomas E L and Berggren K K 2008 Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates Science321 939–43
[134] Jung Y S, Chang J B, Verploegen E, Berggren K K and Ross C A 2010 A path to ultranarrow patterns using self-assembled lithography Nano Lett.10 1000–5
[135] Delgadillo P A R, Gronheid R, Thode C J, Wu H P, Cao Y, Neisser M O, Somervell M, Nafus K and Nealey P F 2012 Implementation of a chemo-epitaxy flow for directed self-assembly on 300-mm wafer processing equipment Proc. SPIE11 031302
[136] Suh H S, Kim D H, Moni P, Xiong S S, Ocola L E, Zaluzec N J, Gleason K K and Nealey P F 2017 Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat Nat. Nanotechnol.12 575–81
[137] Yang J K W, Jung Y S, Chang J B, Mickiewicz R A, Alexander-Katz A, Ross C A and Berggren K K 2010 Complex self-assembled patterns using sparse commensurate templates with locally varying motifs Nat. Nanotechnol.5 256–60
[138] Kulkarni A A and Doerk G S 2022 Hierarchical, self-assembled metasurfaces via exposure-controlled reflow of block copolymer-derived nanopatterns ACS Appl. Mater. Interfaces14 27466–75
[139] Liu W Y, Zhong H, Wang R S and Seeman N C 2011 Crystalline two-dimensional DNA-origami arrays Angew. Chem., Int. Ed.50 264–7
[140] Lin Q-Y et al 2018 Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly Science359 669–72
[141] Rothemund P W K 2006 Folding DNA to create nanoscale shapes and patterns Nature440 297–302
[142] Han D R, Pal S, Nangreave J, Deng Z T, Liu Y and Yan H 2011 DNA origami with complex curvatures in three-dimensional space Science332 342–6
[143] Wang Y F, Wang Y, Breed D R, Manoharan V N, Feng L, Hollingsworth A D, Weck M and Pine D J 2012 Colloids with valence and specific directional bonding Nature491 51–55
[144] Liu W Y, Tagawa M, Xin H L, Wang T, Emamy H, Li H L, Yager K G, Starr F W, Tkachenko A V and Gang O 2016 Diamond family of nanoparticle superlattices Science351 582–6
[145] O'Brien M N, Lin H X, Girard M, Olvera de la Cruz M and Mirkin C A 2016 Programming colloidal crystal habit with anisotropic nanoparticle building blocks and DNA bonds J. Am. Chem. Soc.138 14562–5
[146] Vial S, Nykypanchuk D, Yager K G, Tkachenko A V and Gang O 2013 Linear mesostructures in DNA–nanorod self-assembly ACS Nano7 5437–45
[147] Xiong H M, van der Lelie D and Gang O 2009 Phase behavior of nanoparticles assembled by DNA linkers Phys. Rev. Lett.102 015504
[148] Nykypanchuk D, Maye M M, van der Lelie D and Gang O 2008 DNA-guided crystallization of colloidal nanoparticles Nature451 549–52
[149] Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C and Mirkin C A 2011 Nanoparticle superlattice engineering with DNA Science334 204–8
[150] Zhao Y, Dai X P, Wang F, Zhang X L, Fan C H and Liu X G 2019 Nanofabrication based on DNA nanotechnology Nano Today26 123–48
[151] Kershner R J et al 2009 Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nat. Nanotechnol.4 557–61
[152] Myers B D, Palacios E, Myers D I, Butun S, Aydin K and Dravid V P 2019 Stimuli-responsive DNA-linked nanoparticle arrays as programmable surfaces Nano Lett.19 4535–42
[153] Jung W et al 2021 Three-dimensional nanoprinting via charged aerosol jets Nature592 54–59
[154] Shin J, Jung Y H, Pikhitsa P V, Hur C, Cho W, Jung W and Choi M 2022 Three-dimensional nanoprinting with charged aerosol focusing via an electrified mask Addit. Manuf.60 103206
[155] Jung W, Pikhitsa P V, Jung Y H, Shin J, Han M and Choi M 2021 3D nanoprinting with charged aerosol particles—an overview Acc. Mater. Res.2 1117–28
[156] Mao P, Liu C X, Li X Y, Liu M X, Chen Q, Han M, Maier S A, Sargent E H and Zhang S 2021 Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs Light Sci. Appl.10 180
[157] Liu S R, Ai J G, Zhang Y Q and Feng J C 2024 Programmable and parallel 3D nanoprinting using configured electric fields Adv. Funct. Mater.34 2308734
[158] Liu B Y, Liu S R, Devaraj V, Yin Y X, Zhang Y Q, Ai J G, Han Y C and Feng J C 2023 Metal 3D nanoprinting with coupled fields Nat. Commun.14 4920
[159] Vazquez-Mena O, Villanueva G, Savu V, Sidler K, van den Boogaart M A F and Brugger J 2008 Metallic nanowires by full wafer stencil lithography Nano Lett.8 3675–82
[160] Su P et al 2021 Large-area optical metasurface fabrication using nanostencil lithography Opt. Lett.46 2324–7
[161] Du K, Liu Y Y, Wathuthanthri I and Choi C H 2012 Dual applications of free-standing holographic nanopatterns for lift-off and stencil lithography J. Vac. Sci. Technol. B 30 06FF04
[162] Du K, Ding J J, Wathuthanthri I and Choi C H 2017 Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography Nanotechnology28 465303
[163] Savu V, van den Boogaart M A F, Brugger J, Arcamone J, Sansa M and Perez-Murano F 2008 Dynamic stencil lithography on full wafer scale J. Vac. Sci. Technol. B 26 2054–8
[164] Huang M, Galarreta B C, Artar A, Adato R, Aksu S and Altug H 2012 Reusable nanostencils for creating multiple biofunctional molecular nanopatterns on polymer substrate Nano Lett.12 4817–22
[165] Aksu S, Yanik A A, Adato R, Artar A, Huang M and Altug H 2010 High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy Nano Lett.10 2511–8
[166] Sopha H, Samoril T, Palesch E, Hromadko L, Zazpe R, Skoda D, Urbanek M, Ng S, Prikryl J and Macak J M 2017 Ideally hexagonally ordered TiO2 nanotube arrays ChemistryOpen6 480–3
[167] So S, Hwang I and Schmuki P 2015 Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8% Energy Environ. Sci.8 849–54
[168] Albu S P, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson G E, Macak J M and Schmuki P 2008 Formation of double-walled TiO2 nanotubes and robust anatase membranes Adv. Mater.20 4135–9
[169] Thuy U T D, Thuy N T, Tung N T, Janssens E and Liem N Q 2019 Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection APL Mater.7 071102
[170] Gulati K, Santos A, Findlay D and Losic D 2015 Optimizing anodization conditions for the growth of Titania nanotubes on curved surfaces J. Phys. Chem. C 119 16033–45
[171] Fu Y and Mo A C 2018 A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications Nanoscale Res. Lett.13 187
[172] Allred D B, Cheng A C, Sarikaya M, Baneyx F and Schwartz D T 2008 Three-dimensional architecture of inorganic nanoarrays electrodeposited through a surface-layer protein mask Nano Lett.8 1434–8
[173] Wen L Y, Xu R, Mi Y and Lei Y 2017 Multiple nanostructures based on anodized aluminium oxide templates Nat. Nanotechnol.12 244–50
[174] Lin Q F, Leung S F, Tsui K H, Hua B and Fan Z Y 2013 Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures Nanoscale Res. Lett.8 268
[175] Mozalev A, Bendova M, Gispert-Guirado F, Pytlicek Z and Llobet E 2016 Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes J. Mater. Chem. A 4 8219–32
[176] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B D, Yin Y D, Kim F and Yan H Q 2003 One-dimensional nanostructures: synthesis, characterization, and applications Adv. Mater.15 353–89
[177] Hasan M, Schroers J and Kumar G 2015 Functionalization of metallic glasses through hierarchical patterning Nano Lett.15 963–8
[178] Liu N J, Xie Y J, Liu G N, Sohn S, Raj A, Han G X, Wu B Z, Cha J J, Liu Z and Schroers J 2020 General nanomolding of ordered phases Phys. Rev. Lett.124 036102
[179] Lee D et al 2018 Polarization-sensitive tunable absorber in visible and near-infrared regimes Sci. Rep.8 12393
[180] Wan Y H, Krueger N A, Ocier C R, Su P, Braun P V and Cunningham B T 2017 Resonant mode engineering of photonic crystal sensors clad with ultralow refractive index porous silicon dioxide Adv. Opt. Mater.5 1700605
[181] Lee G Y, Hong J Y, Hwang S, Moon S, Kang H, Jeon S, Kim H, Jeong J H and Lee B 2018 Metasurface eyepiece for augmented reality Nat. Commun.9 4562
[182] Makarov S V et al 2017 Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces ACS Photonics4 728–35
[183] Liu Z, Liu N J and Schroers J 2022 Nanofabrication through molding Prog. Mater. Sci.125 100891
[184] Ahiboz D, Manley P and Becker C 2020 Adjustable large-area dielectric metasurfaces for near-normal oblique incident excitation OSA Contin.3 971–81
[185] Chehadi Z, Montanari M, Granchi N, Modaresialam M, Koudia M, Abel M, Putero M, Grosso D, Intonti F and Abbarchi M 2022 Soft nano-imprint lithography of rare-earth-doped light-emitting photonic metasurface Adv. Opt. Mater.10 2201618
[186] Chou S Y, Krauss P R and Renstrom P J 1995 Imprint of sub-25 nm vias and trenches in polymers Appl. Phys. Lett.67 3114–6
[187] Barbero D R, Saifullah M S M, Hoffmann P, Mathieu H J, Anderson D, Jones G A C, Welland M and Steiner U 2007 High-resolution nanoimprinting with a robust and reusable polymer mold Adv. Funct. Mater.17 2419–25
[188] Suh K Y, Kim Y S and Lee H H 2001 Capillary force lithography Adv. Mater.13 1386–9
[189] Liang C C, Lin C H, Cheng T C, Shieh J and Lin H H 2015 Nanoimprinting of flexible polycarbonate sheets with a flexible polymer mold and application to superhydrophobic surfaces Adv. Mater. Interfaces2 1500030
[190] Khang D Y, Kang H, Kim T I and Lee H H 2004 Low-pressure nanoimprint lithography Nano Lett.4 633–7
[191] Kumar G, Tang H X and Schroers J 2009 Nanomoulding with amorphous metals Nature457 868–72
[192] Mukherjee S, Carmo M, Kumar G, Sekol R C, Taylor A D and Schroers J 2012 Palladium nanostructures from multi-component metallic glass Electrochim. Acta74 145–50
[193] Li R et al 2018 Atomic imprinting into metallic glasses Commun. Phys.1 75
[194] Liu X, Shao Y, Li J F, Chen N and Yao K F 2014 Large-area and uniform amorphous metallic nanowire arrays prepared by die nanoimprinting J. Alloys Compd.605 7–11
[195] Chu J P, Wijaya H, Wu C W, Tsai T R, Wei C S, Nieh T G and Wadsworth J 2007 Nanoimprint of gratings on a bulk metallic glass Appl. Phys. Lett.90 034101
[196] Mukherjee S, Sekol R C, Carmo M, Altman E I, Taylor A D and Schroers J 2013 Tunable hierarchical metallic-glass nanostructures Adv. Funct. Mater.23 2708–13
[197] Liu Z and Schroers J 2015 General nanomoulding with bulk metallic glasses Nanotechnology26 145301
[198] Kumar G, Desai A and Schroers J 2011 Bulk metallic glass: the smaller the better Adv. Mater.23 461–76
[199] Gong P, Kou H C, Wang S B, Deng L, Wang X Y and Jin J S 2019 Research on thermoplastic formability and nanomoulding mechanism of lightweight Ti-based bulk metallic glasses J. Alloys Compd.801 267–76
[200] Gong P, Wang S B, Liu Z, Chen W, Li N, Wang X Y and Yao K F 2018 Lightweight Ti-based bulk metallic glasses with superior thermoplastic formability Intermetallics98 54–59
[201] Han G X, Xu L H and Liu Z 2019 Controlled fabrication of hierarchical metal nanostructures Mater. Lett.241 160–3
[202] Liu Z, Han G X, Sohn S, Liu N J and Schroers J 2019 Nanomolding of crystalline metals: the smaller the easier Phys. Rev. Lett.122 036101
[203] Liu Z 2019 Investigation of temperature and feature size effects on deformation of metals by superplastic nanomolding Phys. Rev. Lett.122 016101
[204] Liu Z 2017 One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures Nat. Commun.8 14910
[205] Ajayan P M and Lijima S 1993 Capillarity-induced filling of carbon nanotubes Nature361 333–4
[206] Kim M, Lee D, Kim T H, Yang Y, Park H J and Rho J 2019 Observation of enhanced optical spin hall effect in a vertical hyperbolic metamaterial ACS Photonics6 2530–6
[207] Byun M, Lee D, Kim M, Kim Y, Kim K, Ok J G, Rho J and Lee H 2017 Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging Sci. Rep.7 46314
[208] Lee D et al 2018 Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging ACS Photonics5 2549–54
[209] Lee D, Yang Y, Yoon G, Kim M and Rho J 2019 Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces Appl. Phys. Lett.115 101102
[210] Lee D, Kim M, Kim J, Hong H, Badloe T, Kim D S and Rho J 2019 All-dielectric metasurface imaging platform applicable to laser scanning microscopy with enhanced axial resolution and wavelength selection Opt. Mater. Express9 3248–59
[211] Jeong J W et al 2014 High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching Nat. Commun.5 5387
[212] Park T W et al 2020 Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability Sci. Adv.6 eabb6462
[213] Park T W, Jung H, Park J, Ahn Y S, Hong S W, Lee J, Lee J H and Park W I 2021 Topographically designed hybrid nanostructures via nanotransfer printing and block copolymer self-assembly Nanoscale13 11161–8
[214] Zhu J F, Wang Z Y, Lin S W, Jiang S, Liu X Y and Guo S S 2020 Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker Biosens. Bioelectron.150 111905
[215] Zabow G 2022 Reflow transfer for conformal three-dimensional microprinting Science378 894–8
[216] Allegro I, Bonal V, Mamleyev E R, Villalvilla J M, Quintana J A, Jin Q H, Daz-Garca M A and Lemmer U 2023 Distributed feedback lasers by thermal nanoimprint of perovskites using gelatin gratings ACS Appl. Mater. Interfaces15 8436–45
[217] Wang Z, Hansen C, Ge Q, Maruf S H, Ahn D U, Qi H J and Ding Y F 2011 Programmable, pattern-memorizing polymer surface Adv. Mater.23 3669–73
[218] Lee S, Lee N, Yeon G, Park J, Choi H, Koo S, Oh D K and Ok J G 2021 Piezo-actuated one-axis vibrational patterning for mold-free continuous fabrication of high-precision period-programmable micro- and nanopatterns ACS Nano15 3070–8
[219] Oh D K et al 2019 Tailored nanopatterning by controlled continuous nanoinscribing with tunable shape, depth, and dimension ACS Nano13 11194–202
[220] Sayed S and Selvaganapathy P R 2021 Constrained shrinking of nanoimprinted pre-stressed polymer films to achieve programmable, high-resolution, miniaturized nanopatterns Nanotechnology32 505301
[221] Haisma J, Verheijen M, van den Heuvel K and van den Berg J 1996 Mold-assisted nanolithography: a process for reliable pattern replication J. Vac. Sci. Technol.14 4124–8
[222] Zhou Y, Shen S, Zhang J, Jin P F and Liu Y H 2015 Fabrication of sub-wavelength antireflective structures using a soft roll-to-plate nanoimprinting lithographic method Adv. Mater. Res.1118 3–8
[223] Yoon G, Kim I and Rho J 2016 Challenges in fabrication towards realization of practical metamaterials Microelectron. Eng.163 7–20
[224] Pina-Hernandez C, Guo L J and Fu P F 2010 High-resolution functional epoxysilsesquioxane-based patterning layers for large-area nanoimprinting ACS Nano4 4776–84
[225] Lee J H et al 2017 Rapid and conformal coating of polymer resins by airbrushing for continuous and high-speed roll-to-roll nanopatterning: parametric quality controls and extended applications Nano Converg.4 11
[226] Wong H C, Grenci G, Wu J, Viasnoff V and Low H Y 2018 Roll-to-roll fabrication of residual-layer-free micro/nanoscale membranes with precise pore architectures and tunable surface textures Ind. Eng. Chem. Res.57 13759–68
[227] King E, Xia Y N, Zhao X M and Whitesides G M 1997 Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers Adv. Mater.9 651–4
[228] Hu J T, Wang D Q, Bhowmik D, Liu T T, Deng S K, Knudson M P, Ao X Y and Odom T W 2019 Lattice-resonance metalenses for fully reconfigurable imaging ACS Nano13 4613–20
[229] Lee M H, Huntington M D, Zhou W, Yang J C and Odom T W 2011 Programmable soft lithography: solvent-assisted nanoscale embossing Nano Lett.11 311–5
[230] Yang F, Chen Q Y, Wang J J, Chang J J, Dong W H, Cao W, Ye S S, Shi L and Nie Z H 2023 Fabrication of centimeter-scale plasmonic nanoparticle arrays with ultranarrow surface lattice resonances ACS Nano17 725–34
[231] Lee S H, Rho W Y, Park S J, Kim J, Kwon O S and Jun B H 2018 Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning Sci. Rep.8 16763
[232] Shallcross R C, Chawla G S, Marikkar F S, Tolbert S, Pyun J and Armstrong N R 2009 Efficient CdSe nanocrystal diffraction gratings prepared by microcontact molding ACS Nano3 3629–37
[233] Jeon J, Hwang J, Bhattarai K, Kim D K, Kim J O, Urbas A, Zhou J F, Ku Z and Lee S J 2019 Robust metamaterial-based antireflection coating for surface plasmon polariton resonance Opt. Mater. Express9 1290–7
[234] Zhang J H, ElKabbash M, Wei R, Singh S C, Lam B and Guo C L 2019 Plasmonic metasurfaces with 42.3% transmission efficiency in the visible Light Sci. Appl.8 53
[235] Wang H C, Achouri K and Martin O J F 2022 Robustness analysis of metasurfaces: perfect structures are not always the best ACS Photonics9 2438–47
[236] Seisyan R P 2011 Nanolithography in microelectronics: a review Technol. Phys.56 1061–73
[237] Levenson M D, Viswanathan N S and Simpson R A 1982 Improving resolution in photolithography with a phase-shifting mask IEEE Trans. Electron Devices29 1828–36
[238] Huang L Y, Xu K, Yuan D D, Hu J, Wang X W and Xu S L 2022 Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces Nat. Commun.13 5823
[239] Chen J F, Laidig T L, Wampler K E and Caldwell R F 1997 Practical method for full-chip optical proximity correction Proc. SPIE3051 790
[240] Kling M et al 1998 0.25-m logic manufacturability using practical 2D optical proximity correction Proc. SPIE3334 204–14
[241] Chen Y Q, Bi K X, Wang Q J, Zheng M J, Liu Q, Han Y X, Yang J B, Chang S L, Zhang G H and Duan H G 2016 Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy ACS Nano10 11228–36
[242] Hu H and Bayanheshig 2022 Exploration of a flexible metasurface for strain sensors: a perspective from 2D grating fabrication to spectral characterization Appl. Sci.12 10007
[243] Chen P, Salemink H W M and Alkemade P F A 2009 Proximity effect in ion-beam-induced deposition of nanopillars J. Vac. Sci. Technol. B 27 1838–43
[244] Flatab R, Agarwal A, Hobbs R, Greve M M, Holst B and Berggren K K 2018 Exploring proximity effects and large depth of field in helium ion beam lithography: large-area dense patterns and tilted surface exposure Nanotechnology29 275301
[245] Chen Y Q, Xiang Q, Li Z Q, Wang Y S, Meng Y H and Duan H G 2016 “Sketch and peel” lithography for high-resolution multiscale patterning Nano Lett.16 3253–9
[246] Zheng M J et al 2019 Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates Microsyst. Nanoeng.5 54
[247] Shu Z W, Chen Y Q, Feng Z Y, Liang H K, Li W Y, Liu Y and Duan H G 2022 Asymmetric nanofractures determined the nonreciprocal peeling for self-aligned heterostructure nanogaps and devices ACS Appl. Mater. Interfaces14 1718–26
[248] Kim I, Mun J, Baek K M, Kim M, Hao C L, Qiu C W, Jung Y S and Rho J 2020 Cascade domino lithography for extreme photon squeezing Mater. Today39 89–97
[249] Kim I, Mun J, Hwang W, Yang Y and Rho J 2020 Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures Microsyst. Nanoeng.6 65
[250] Oh D K, Kim Y, Kim J, Kim I and Rho J 2023 Guided domino lithography for uniform fabrication of single-digit-nanometer scale plasmonic nanoantenna Nanophotonics12 1435–41
[251] Luo C Y, Xu C C, Lv L, Li H, Huang X X and Liu W 2020 Review of recent advances in inorganic photoresists RSC Adv.10 8385–95
[252] Park E M, Choi J, Kang B H, Dong K Y, Park Y, Song I S and Ju B K 2011 Investigation of the effects of bottom anti-reflective coating on nanoscale patterns by laser interference lithography Thin Solid Films519 4220–4
[253] Raut H K, Ganesh V A, Nair A S and Ramakrishna S 2011 Anti-reflective coatings: a critical, in-depth review Energy Environ. Sci.4 3779–804
[254] Kang W B, Tanaka H, Kimura K, Padmanaban M, Funato S, Kinoshita Y, Kudo T, Nozaki Y and Pawlowski G 1997 Bottom anti-reflective coatings for DUV lithography J. Photopolym. Sci. Technol.10 471–7
[255] Tanaka T, Hasegawa N, Shiraishi H and Okazaki S 1990 A new photolithography technique with antireflective coating on resist: ARCOR J. Electrochem. Soc.137 3900–5
[256] Huang J-S et al 2010 Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry Nat. Commun.1 150
[257] Mori T, Mori T, Tanaka Y, Suzaki Y and Yamaguchi K 2017 Fabrication of single-crystalline plasmonic nanostructures on transparent and flexible amorphous substrates Sci. Rep.7 42859
[258] Horibe H, Ishiguro K, Nishiyama T, Kono A, Enomoto K, Yamamoto H, Endo M and Tagawa S 2014 Sensitivity of a chemically amplified three-component resist containing a dissolution inhibitor for extreme ultraviolet lithography Polym. J.46 234–8
[259] Reichmanis E, Houlihan F M, Nalamasu O and Neenan T X 1994 Chemically amplified resists: chemistry and processes Adv. Mater. Opt. Electron.4 83–93
[260] Zhang S L et al 2023 Chemically amplified molecular glass photoresist regulated by 2-aminoanthracene additive for electron beam lithography and extreme ultraviolet lithography ACS Omega8 26739–48
[261] Lu X Y, Zhang R S, Yang G W, Li Q, Li B and Wu G P 2024 Aqueous developable and CO2-sourced chemical amplification photoresist with high performance Angew. Chem., Int. Ed.136 e202401850
[262] Xu H, Sakai K, Kasahara K, Kosma V, Yang K, Herbol H C, Odent J, Clancy P, Giannelis E P and Ober C K 2018 Metal–organic framework-inspired metal-containing clusters for high-resolution patterning Chem. Mater.30 4124–33
[263] Tu M et al 2021 Direct x-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks Nat. Mater.20 93–99
[264] Zhu Y, Hou G Z, Wang Q Y, Zhu T, Sun T, Xu J and Chen K J 2022 Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces Nanoscale14 10816–22
[265] Jiang T, Goel P, Zhao H, Ma R, Zhu L H, Liu X J and Tang L H 2020 Internal structure tailoring in 3D nanoplasmonic metasurface for surface-enhanced Raman spectroscopy Part. Part. Syst. Charact.37 1900345
[266] Iyer P P, Pendharkar M, Palmstrm C J and Schuller J A 2019 III–V heterojunction platform for electrically reconfigurable dielectric metasurfaces ACS Photonics6 1345–50
[267] Dyrnesli H, Kls G and Sutherland D S 2020 Under-etched plasmonic disks on indium tin oxide for enhanced refractive index sensing on a combined electrochemical and optical platform Materials13 853
[268] Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland D S, Zch M and Kasemo B 2007 Hole–mask colloidal lithography Adv. Mater.19 4297–302
[269] Yang A K, Huntington M D, Cardinal M F, Masango S S, Van Duyne R P and Odom T W 2014 Hetero-oligomer nanoparticle arrays for Plasmon-enhanced hydrogen sensing ACS Nano8 7639–47
[270] Kls G, Andersen A, Miola M, Birkedal H and Sutherland D S 2019 Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks Nano Res.12 1635–42
[271] Bochenkov V E and Sutherland D S 2013 From rings to crescents: a novel fabrication technique uncovers the transition details Nano Lett.13 1216–20
[272] Knudson M P, Li R, Wang D Q, Wang W J, Schaller R D and Odom T W 2019 Polarization-dependent lasing behavior from low-symmetry nanocavity arrays ACS Nano13 7435–41
[273] Lin Y H, Wang D Q, Hu J T, Liu J X, Wang W J, Guan J, Schaller R D and Odom T W 2019 Engineering symmetry-breaking nanocrescent arrays for nanolasing Adv. Funct. Mater.29 1904157
[274] Bochenkov V E and Sutherland D S 2018 Chiral plasmonic nanocrescents: large-area fabrication and optical properties Opt. Express26 27101–8
[275] Liang Y, Lin H, Koshelev K, Zhang F C, Yang Y Y, Wu J Y, Kivshar Y and Jia B H 2021 Full-stokes polarization perfect absorption with diatomic metasurfaces Nano Lett.21 1090–5
[276] Deng S K, Li R, Park J E, Guan J, Choo P, Hu J T, Smeets P J M and Odom T W 2020 Ultranarrow plasmon resonances from annealed nanoparticle lattices Proc. Natl Acad. Sci. USA117 23380–4
[277] Deng S K, Park J E, Kang G, Guan J, Li R, Schatz G C and Odom T W 2022 Interfacial engineering of plasmonic nanoparticle metasurfaces Proc. Natl Acad. Sci. USA119 e2202621119
[278] Ye S S, Zha H, Xia Y F, Dong W H, Yang F, Yi C L, Tao J, Shen X X, Yang D and Nie Z H 2022 Centimeter-scale superlattices of three-dimensionally orientated plasmonic dimers with highly tunable collective properties ACS Nano16 4609–18
[279] Yang F et al 2021 Laser-scanning-guided assembly of Quasi-3D patterned arrays of plasmonic dimers for information encryption Adv. Mater.33 2100325
[280] Wang Y Z et al 2022 Site-selective assembly of centimeter-scale arrays of precisely oriented magnetic nanoellipsoids ACS Nano16 21208–15
[281] Lyu S, Zhang Y L, Du G H, Di C X, Yao H J, Fan Y L, Duan J L and Lei D Y 2023 Double-sided plasmonic metasurface for simultaneous biomolecular separation and SERS detection Spectrochim. Acta A 285 121801
[282] Rajput N S, Tong Z and Luo X C 2015 Investigation of ion induced bending mechanism for nanostructures Mater. Res. Express2 015002
[283] Chalapat K, Chekurov N, Jiang H, Li J, Parviz B and Paraoanu G S 2013 Self-organized origami structures via ion-induced plastic strain Adv. Mater.25 91–95
[284] Liu Z G, Du H F, Li J F, Lu L, Li Z Y and Fang N X 2018 Nano-kirigami with giant optical chirality Sci. Adv.4 eaat4436
[285] Li J F and Liu Z G 2018 Focused-ion-beam-based nano-kirigami: from art to photonics Nanophotonics7 1637–50
[286] Zhao Y H, Liang Q H, Li S F, Chen Y Y, Liu X, Sun H Z, Wang C, Ji C Y, Li J F and Wang Y 2024 Thermal emission manipulation enabled by nano-kirigami structures Small20 2305171
[287] Molet P, Gil-Herrera L K, Garcia-Pomar J L, Caselli N, Blanco , Lpez C and Mihi A 2020 Large area metasurfaces made with spherical silicon resonators Nanophotonics9 943–51
[288] Bar-David J, Mazurski N and Levy U 2017 In situ planarization of huygens metasurfaces by nanoscale local oxidation of silicon ACS Photonics4 2359–66
[289] Li T Y, Wei Q S, Reineke B, Walter F, Wang Y T, Zentgraf T and Huang L L 2019 Reconfigurable metasurface hologram by utilizing addressable dynamic pixels Opt. Express27 21153–62
[290] Bar-David J, Mazurski N and Levy U 2019 Resonance trimming in dielectric resonant metasurfaces IEEE J. Sel. Top. Quantum Electron.25 4700705
[291] Connell T U, Bonin G O, Easton C D, Della Gaspera E, Chesman A S R, Davis T J and Gmez D E 2019 Directing energy into a subwavelength nonresonant metasurface across the visible spectrum ACS Appl. Energy Mater.2 1155–61
[292] Yan L B et al 2017 Adaptable metasurface for dynamic anomalous reflection Appl. Phys. Lett.110 201904
[293] Wang J Q, Liu S C, Guruswamy S and Nahata A 2014 Reconfigurable terahertz metamaterial device with pressure memory Opt. Express22 4065–74
[294] Hsu L, Ndao A and Kant B 2019 Broadband and linear polarization metasurface carpet cloak in the visible Opt. Lett.44 2978–81
[295] Zhang C, Zhao H Q, Zhou L N, Schlather A E, Dong L L, McClain M J, Swearer D F, Nordlander P and Halas N J 2016 Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts Nano Lett.16 6677–82
[296] Zheng Z K, Tachikawa T and Majima T 2015 Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level J. Am. Chem. Soc.137 948–57
[297] Zheng Z K, Tachikawa T and Majima T 2014 Single-particle study of Pt-modified Au nanorods for Plasmon-enhanced hydrogen generation in visible to near-infrared region J. Am. Chem. Soc.136 6870–3
[298] Della Gaspera E, Bersani M, Mattei G, Nguyen T L, Mulvaney P and Martucci A 2012 Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface Plasmon spectroscopy Nanoscale4 5972–9
[299] Sheverdin A and Valagiannopoulos C 2019 Core-shell nanospheres under visible light: optimal absorption, scattering, and cloaking Phys. Rev. B 99 075305
[300] Al A and Engheta N 2005 Achieving transparency with plasmonic and metamaterial coatings Phys. Rev. E 72 016623
[301] Khlebtsov B, Zharov V, Melnikov A, Tuchin V and Khlebtsov N 2006 Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters Nanotechnology17 5167–79
[302] Huang Y J et al 2022 Wafer-scale self-assembled 2.5D metasurface for efficient near-field and far-field electromagnetic manipulation Appl. Surf. Sci.601 154244
[303] Yu W W, Lu Y, Chen X R, Xu H, Shao J, Chen X, Sun Y, Hao J M and Dai N 2019 Large-area, broadband, wide-angle plasmonic metasurface absorber for midwavelength infrared atmospheric transparency window Adv. Opt. Mater.7 1900841
[304] Wang Z D, Huang Q, Chen P, Guo S H, Liu X Q, Liang X L and Wang L 2016 Metal induced growth of transition metal dichalcogenides at controlled locations Sci. Rep.6 38394
[305] Ma R, Haastrup M J, Wang Z G, Liu Y M, Ye H, Dong M D, Lauritsen J V and Sutherland D S 2020 Direct integration of few-layer MoS2 at Plasmonic Au nanostructure by substrate-diffusion delivered Mo Adv. Mater. Interfaces7 1902093
[306] Jeong H, Kim D Y, Kim J, Moon S, Han N M, Lee S H, Okello O F N, Song K, Choi S Y and Kim J K 2019 Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition Sci. Rep.9 5736
[307] Song I, Park C, Hong M S, Baik J, Shin H J and Choi H C 2014 Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition Angew. Chem., Int. Ed.53 1266–9